
Audio System Toolbox™

Reference

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Audio System Toolbox™ Reference Guide
© COPYRIGHT 2016 - 2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)
September 2017 Online only Revised for Version 1.3 (Release 2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Apps in Audio System Toolbox
1

Functions in Audio System Toolbox
2

System objects in Audio System Toolbox
3

Classes in Audio System Toolbox
4

Blocks in Audio System Toolbox
5

iii

Contents

Apps in Audio System Toolbox

1

Audio Test Bench
Debug, test, and tune audio plugin

Description
The Audio Test Bench provides a graphical interface through which you can develop,
debug, test, and tune your audio plugin in real time. You can interact with properties of
your audio plugin using associated parameter graphical widgets. See
audioPluginParameter for more information.

Using the Audio Test Bench, you can:

• Debug your audio plugin.
• Simulate your audio plugin as generated in a digital audio workstation (DAW).
• Visualize your processing with time-domain and frequency-domain scopes.
• Interactively synchronize MIDI controls to plugin properties.
• Run validation checks and generate VST plugins.

Develop and Test Features
Button Description

Run Run your audio plugin in an audio stream loop using the specified
input and output configuration. You can tune parameters of your
audio processing algorithm in real time. The MATLAB® command
line and objects used by the test bench are locked while the test
bench is running.

Pause
(appears
while test
bench runs)

Pause audio stream loop. The MATLAB command line is released.
Objects used by the test bench remain locked.

Step Forward Call the processing function of your audio plugin one time in an
audio stream loop, with input and output specified by your input
and output configuration.

1 Apps in Audio System Toolbox

1-2

Button Description
Stop Stop the audio stream loop. The MATLAB command line and

objects used by the test bench are released.
Reset Reset internal states of your audio plugin and set parameters to

their initial values.
View Source
Code

Open the source file of your audio plugin.

Synchronize
to MIDI
Controls

Start the configureMIDI user interface (UI) for your plugin
object.

Time Scope Open an instance of dsp.TimeScope, which provides a time-
domain visualization of the output from your audio stream loop.

Spectrum
Analyzer

Open an instance of dsp.SpectrumAnalyzer, which provides a
frequency-domain visualization of the output from your audio
stream loop.

Generate VST
2 Audio
Plugin

Open a UI to validate and generate your plugin object. For Audio
System Toolbox System objects, the Audio Test Bench creates an
audioPlugin class using the createAudioPluginClass method
of the object. The created plugin class is used to generate a plugin
object. For more information, see validateAudioPlugin,
generateAudioPlugin, and the createAudioPluginClass
method of your System object™.

Generate
MATLAB
Script

Generate a MATLAB script implementation of your audio test
bench.

Help Open MATLAB documentation for Audio Test Bench.

 Audio Test Bench

1-3

Button Description
Configure
Input

Open the input configuration UI. The UI options depend on your
choice of input to the audio stream loop. See the corresponding
documentation for your input choice:

• Audio File Reader –– dsp.AudioFileReader
• Audio Device Reader –– audioDeviceReader
• Audio Oscillator –– audioOscillator
• Wavetable Synthesizer –– wavetableSynthesizer
• Chirp Signal –– dsp.Chirp
• Colored Noise –– dsp.ColoredNoise

Configure
Output

Open the output configuration UI. The UI options depend on
whether you choose Audio File Writer or Audio Device
Writer for the output from your audio stream loop. If you choose to
output Both, two dialog boxes open: one for the Audio File
Writer and one for the Audio Device Writer. For more
information, see dsp.AudioFileWriter and
audioDeviceWriter.

Open the Audio Test Bench App
MATLAB command prompt: Enter audioTestBench.

Examples
• “Audio Test Bench Walkthrough”

Programmatic Use

audioTestBench pluginClass opens the Audio Test Bench for an instance of
pluginClass. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

1 Apps in Audio System Toolbox

1-4

audioTestBench(pluginClassInstance) opens the Audio Test Bench for
pluginClassInstance, where pluginClassInstance is an instance of an audio
plugin class. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

audioTestBench ASTSystemObject opens the Audio Test Bench for an instance of a
compatible Audio System Toolbox System object.

audioTestBench(ASTSystemObjectInstance) opens the Audio Test Bench for
ASTSystemObjectInstance, where ASTSystemObjectInstance is an instance of a
compatible Audio System Toolbox System object.

audioTestBench(hostedPlugin) opens the Audio Test Bench for hostedPlugin,
where hostedPlugin is an object returned by the loadAudioPlugin function.

audioTestBench(pluginPath) opens the Audio Test Bench for pluginPath, where
pluginPath is the location of an external plugin. Use the full path to specify the audio
plugin you want to host. If the plugin is located in the current folder, specify it by its
name.

See Also
Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Audio Test Bench Walkthrough”
“What Are DAWs, Audio Plugins, and MIDI Controllers?”
“Design an Audio Plugin”
“Audio Plugin Example Gallery”

Introduced in R2016a

 Audio Test Bench

1-5

Functions in Audio System Toolbox

2

asiosettings
Open settings panel for ASIO driver

Syntax
asiosettings
asiosettings(deviceName)

Description
asiosettings opens the settings panel for the ASIO driver associated with the default
audio device.

asiosettings(deviceName) opens the settings panel for the ASIO driver associated
with the audio device, deviceName.

Examples

Open ASIO Settings Panel for Specified Device

Create an audio I/O object, audioPlayerRecorder. Call asiosettings with the device
associated with audioPlayerRecorder as the argument.

playRec = audioPlayerRecorder;
asiosettings(playRec.Device)

Open ASIO Settings Panel for Default Device

Call the asiosettings function with no arguments.

asiosettings()

2 Functions in Audio System Toolbox

2-2

Optimize Latency

To optimize latency when using an ASIO driver, set the buffer size of the ASIO driver to
the buffer size of your audio I/O object. In this example, assume the input to your audio
device writer is 64 samples per frame. This example requires a Windows machine and an
ASIO driver.

Create an audioDeviceWriter System object™. Open the ASIO settings panel for an
ASIO-compatible device associated with your device writer.

deviceWriter = audioDeviceWriter('Driver','ASIO');
asiosettings(deviceWriter.Device)

On the machine in this example, the following dialog opens:

 asiosettings

2-3

The dialog that opens is specific to your ASIO driver. Set the ASIO buffer size to the
desired size, 64.

2 Functions in Audio System Toolbox

2-4

The latency is now minimized for the frame size of 64 samples. If you want to measure
the reduction in latency specific to your system, follow the steps in the Measure Audio
Latency example.

Input Arguments
deviceName — Name of ASIO-compatible device
default ASIO-compatible device (default) | character vector | string

Name of ASIO-compatible device, specified as a character vector or string. If
deviceName is not specified, the default ASIO-compatible device is used.

 asiosettings

2-5

matlab:web(fullfile(docroot,'audio/examples/measure-audio-latency.html')),
matlab:web(fullfile(docroot,'audio/examples/measure-audio-latency.html')),

To view a list of valid ASIO device names on your machine, use getAudioDevices on an
audioPlayerRecorder, audioDeviceReader('Driver','ASIO'), or
audioDeviceWriter('Driver','ASIO') object.
Data Types: char | string

Tips
• asiosettings is compatible only on Windows machines with ASIO drivers. ASIO

drivers do not come pre-installed with Windows.
• asiosettings returns an error if called with a locked audio device. For example:

aDR = audioDeviceReader('Driver','ASIO');
aDR();
asiosettings(aDR.Device)

Error using audio_asiosettings
PortAudio Error: Device unavailable

Error in asiosettings (line 77)
 audio_asiosettings(ID);

See Also
System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2017b

2 Functions in Audio System Toolbox

2-6

getAudioDevices
List available audio devices

Syntax
devices = getAudioDevices(obj)

Description
devices = getAudioDevices(obj) returns a list of audio devices that are available
and compatible with your audio I/O object, obj.

Examples

List Audio Devices Available to audioDeviceReader

Create an audioDeviceReader System object™, and then call getAudioDevices on
your object.

deviceReader = audioDeviceReader;
devices = getAudioDevices(deviceReader)

devices =

 1x3 cell array

 {'Default'} {'Primary Sound C...'} {'Microphone (Tur...'}

 getAudioDevices

2-7

List Audio Devices Available to audioDeviceWriter

Create an audioDeviceWriter System object™, and then call getAudioDevices on
your object.

deviceWriter = audioDeviceWriter;
devices = getAudioDevices(deviceWriter)

devices =

 1x3 cell array

 {'Default'} {'Primary Sound D...'} {'Speakers (Turtl...'}

List Audio Devices Available to audioPlayerRecorder

Create an audioPlayerRecorder System object™, and then call getAudioDevices on
your object.

playRec = audioPlayerRecorder;
devices = getAudioDevices(playRec)

devices =

 1x1 cell array

 {'No full-duplex audio device detected'}

Input Arguments
obj — Audio I/O object
object of audioDeviceReader | object of audioDeviceWriter | object of
audioPlayerRecorder

Audio I/O object, specified as an object of audioDeviceReader, audioDeviceWriter,
or audioPlayerRecorder.

2 Functions in Audio System Toolbox

2-8

Data Types: object

Output Arguments
devices — List of available and compatible devices
array

List of available and compatible devices.

For audioDeviceReader and audioDeviceWriter, the list of audio devices depends
on the specified Driver property of your object.

For audioPlayerRecorder, the audio devices listed support full-duplex mode and have
a platform-appropriate driver:

• Windows® –– ASIO™
• Mac –– CoreAudio
• Linux® –– ALSA

Data Types: cell

See Also
System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

 getAudioDevices

2-9

audioPluginInterface
Specify audio plugin interface

Syntax
PluginInterface = audioPluginInterface
PluginInterface = audioPluginInterface(pluginParameters)
PluginInterface = audioPluginInterface(Name,Value)

Description
PluginInterface = audioPluginInterface returns an object, PluginInterface,
that specifies the interface of an audio plugin in a digital audio workstation (DAW)
environment. It also specifies interface attributes, such as naming for identification.

PluginInterface = audioPluginInterface(pluginParameters) specifies audio
plugin parameters, which are user-facing variables associated with audio plugin
properties. See audioPluginParameter for more details.

PluginInterface = audioPluginInterface(Name,Value) specifies
audioPluginInterface properties using one or more Name,Value pair arguments.

Examples

Specify Default Audio Plugin Interface

Create a basic audio plugin class definition file.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end

2 Functions in Audio System Toolbox

2-10

 end
end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;

 audioPluginInterface

2-11

 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin
property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

If you generate and deploy myAudioPlugin to a digital audio workstation (DAW)
environment, the plugin property, Gain, synchronizes with a user-facing plugin
parameter.

Specify Interface Properties

Create a basic audio plugin class definition file. Specify the plugin name, vendor name,
vendor version, unique identification, number of input channels, and number of output
channels.

classdef monoGain < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)

2 Functions in Audio System Toolbox

2-12

 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'),...
 'PluginName','Simple Gain',...
 'VendorName','Cool Company',...
 'VendorVersion','1.0.0',...
 'UniqueId','1a1Z',...
 'InputChannels',1,...
 'OutputChannels',1);
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Input Arguments
pluginParameters — Audio plugin parameters
none (default) | one or more audioPluginParameter objects

Audio plugin parameters, specified as one or more audioPluginParameter objects.

To create an audio plugin parameter, use the audioPluginParameter function. In a
digital audio workstation (DAW) environment, they synchronize plugin class properties
with user-facing parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PluginName','cool effect','VendorVersion','1.0.2' specifies the
name of the generated audio plugin as 'cool effect' and the vendor version as
'1.0.2'.

PluginName — Name of generated plugin
name of plugin class (default) | string

 audioPluginInterface

2-13

Name of your generated plugin, as seen by a host audio application, specified as a
comma-separated pair consisting of 'PluginName' and a string of up to 127 characters.
If 'PluginName' is not specified, the generated plugin is given the name of the audio
plugin class it is generated from.

VendorName — Vendor name of the plugin creator
' ' (default) | string

Vendor name of the plugin creator, specified as the comma-separated pair
'VendorName' and a string of up to 127 characters.

VendorVersion — Vendor version
'1.0.0' (default) | dot-separated string

Vendor version used to track plugin releases, specified as a comma-separated pair
consisting of 'VendorVersion' and a dot-separated string of 1–3 integers in the range 0
to 9.
Example: '1'
Example: '1.4'
Example: '1.3.5'

UniqueId — Unique identifier of plugin
'MWap' (default) | four-character string

Unique identifier for your plugin, specified as a comma-separated pair consisting of
'UniqueID' and a four-character string, used for recognition in certain digital audio
workstation (DAW) environments.

InputChannels — Input channels
2 (default) | integer | vector of integers

Input channels, specified as a comma-separated pair consisting of 'InputChannels'
and an integer or vector of integers. The input channels are the number of input data
arguments and associated channels (columns) passed to the processing function of your
audio plugin.
Example: 'InputChannels',3 calls the processing function with one data argument
containing 3 channels.

2 Functions in Audio System Toolbox

2-14

Example: 'InputChannels',[2,4,1,5] calls the processing function with 4 data
arguments. The first argument contains 2 channels, the second contains 4 channels, the
third contains 1 channel, and the fourth contains 5 channels.

Note This property is not applicable for audio source plugins, and must be omitted.

OutputChannels — Output channels
2 (default) | integer | vector of integers

Output channels, specified a comma-separated pair consisting of 'OutputChannels'
and an integer or vector of integers. The output channels are the number of input data
arguments and associated channels (columns) passed from the processing function of
your audio plugin.
Example: 'OutputChannels',3 specifies the processing function to output one data
argument containing 3 channels.
Example: 'OutputChannels',[2,4,1,5] specifies the processing function to output 4
data arguments. The first argument contains 2 channels, the second contains 4 channels,
the third contains 1 channel, and the fourth contains 5 channels.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPlugin | audioPluginSource

Functions
audioPluginParameter | generateAudioPlugin | validateAudioPlugin

 audioPluginInterface

2-15

Topics
“Design an Audio Plugin”

Introduced in R2016a

2 Functions in Audio System Toolbox

2-16

audioPluginParameter
Specify audio plugin parameters

Syntax
pluginParameter = audioPluginParameter(propertyName)
pluginParameter = audioPluginParameter(propertyName,Name,Value)

Description
pluginParameter = audioPluginParameter(propertyName) returns an object,
pluginParameter, that associates an audio plugin parameter to the audio plugin
property specified by propertyName. Use the plugin parameter object,
pluginParameter, as an argument to an audioPluginInterface function in your
plugin class definition.

In a digital audio workstation (DAW) environment, or when using Audio Test Bench in
the MATLAB environment, plugin parameters are tunable, user-facing variables with
defined ranges mapped to controls. When you modify a parameter value using a control,
the associated plugin property is also modified. If the audio processing algorithm of the
plugin depends on properties, the algorithm is also modified.

To visualize the relationship between plugin properties, parameters, and the
environment in which a plugin is run, see “Implementation of Audio Plugin Parameters”
on page 2-33.

pluginParameter = audioPluginParameter(propertyName,Name,Value)
specifies audioPluginParameter properties using one or more Name,Value pair
arguments.

Examples

 audioPluginParameter

2-17

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin
property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));

2 Functions in Audio System Toolbox

2-18

 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Specify Parameter Information

Create a basic plugin class definition file. Specify 'DisplayName' as 'Awesome Gain',
'Label' as 'linear', and 'Mapping' as {'lin',0,20}.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain',...
 'DisplayName', 'Awesome Gain',...
 'Label', 'linear',...
 'Mapping', {'lin',0,20}));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Integer Parameter Mapping

The following class definition uses integer parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the linear gain of an audio signal in integer steps from 0 to 3.

classdef pluginWithIntegerMapping < audioPlugin
 properties

 audioPluginParameter

2-19

 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Mapping', {'int',0,3}));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithIntegerMapping)

2 Functions in Audio System Toolbox

2-20

matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))
matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))

Power Parameter Mapping

The following class definition uses power parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the gain of an audio signal in dB.

classdef pluginWithPowerMapping < audioPlugin
 properties
 Gain = 0;

 audioPluginParameter

2-21

 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Label', 'dB', ...
 'Mapping', {'pow', 1/3, -140, 12}));
 end
 methods
 function out = process(plugin,in)
 dBGain = 10^(plugin.Gain/20);
 out = in*dBGain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithPowerMapping)

2 Functions in Audio System Toolbox

2-22

matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))
matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))

Logarithmic Parameter Mapping

The following class definition uses logarithmic parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created from
this class to tune the center frequency of a single-band EQ filter from 100 to 10000.

classdef pluginWithLogMapping < audioPlugin
 properties
 EQ

 audioPluginParameter

2-23

 CenterFrequency = 1000;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('CenterFrequency', ...
 'Mapping', {'log',100,10000}));
 end
 methods
 function plugin = pluginWithLogMapping
 plugin.EQ = multibandParametricEQ('NumEQBands',1, ...
 'PeakGains',20, ...
 'Frequencies',plugin.CenterFrequency);
 end
 function out = process(plugin,in)
 out = plugin.EQ(in);
 end
 function set.CenterFrequency(plugin,val)
 plugin.CenterFrequency = val;
 plugin.EQ.Frequencies = val;
 end
 function reset(plugin)
 plugin.EQ.SampleRate = getSampleRate(plugin);
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithLogMapping)

2 Functions in Audio System Toolbox

2-24

matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))
matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))

Enumeration for Logical Properties Parameter Mapping

The following class definition uses enumeration parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created from
this class to block or pass through the audio signal by tuning the PassThrough
parameter.

classdef pluginWithLogicalEnumMapping < audioPlugin
 properties

 audioPluginParameter

2-25

 PassThrough = true;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('PassThrough', ...
 'Mapping', {'enum','Block signal','Pass through'}));
 end
 methods
 function out = process(plugin,in)
 if plugin.PassThrough
 out = in;
 else
 out = zeros(size(in));
 end
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithLogicalEnumMapping)

2 Functions in Audio System Toolbox

2-26

matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))
matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))

'enum' for Enumeration Class Parameter Mapping

The following class definitions comprise a simple example of enumeration parameter
mapping for properties defined by an enumeration class. You can specify the operating
mode of the plugin created from this class by tuning the Mode parameter.

Plugin Class Definition

classdef pluginWithEnumMapping < audioPlugin

 audioPluginParameter

2-27

 properties
 Mode = OperatingMode.boost;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Mode',...
 'Mapping',{'enum','+6 dB','-6 dB','silence','white noise'}));
 end
 methods
 function out = process(plugin,in)
 switch (plugin.Mode)
 case OperatingMode.boost
 out = in * 2;
 case OperatingMode.cut
 out = in / 2;
 case OperatingMode.mute
 out = zeros(size(in));
 case OperatingMode.noise
 out = rand(size(in)) - 0.5;
 otherwise
 out = in;
 end
 end
 end
end

Enumeration Class Definition

classdef OperatingMode < int8
 enumeration
 boost (0)
 cut (1)
 mute (2)
 noise (3)
 end
end

To run the plugin, save the plugin and enumeration class definition files to a local folder.
Then call the Audio Test Bench on the plugin class.

audioTestBench(pluginWithEnumMapping)

2 Functions in Audio System Toolbox

2-28

matlab:web(fullfile(docroot,'audio/ref/audiotestbench-app.html'))

Input Arguments
propertyName — Name of audio plugin property
character vector

Name of the audio plugin property that you want to associate with a parameter, specified
as a character vector. Enter the property name exactly as it is defined in the property
section of your audio plugin class.

 audioPluginParameter

2-29

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DisplayName','Gain','Label','dB' specifies the display name of your
parameter as 'Gain' and the display label for parameter value units as 'dB'.

DisplayName — Display name of parameter
associated property name (default) | character vector

Display name of your parameter, specified as a comma-separated pair consisting of
'DisplayName' and a character vector. If 'DisplayName' is not specified, the name of
the associated property is used.

The display name of your parameter is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

Label — Display label for parameter value units
' ' (default) | character vector

Display label for parameter value units, specified as a comma-separated pair consisting
of 'Label' and a character vector.

The display label for parameter value units is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

The 'Label' name-value pair is ignored for nonnumeric parameters.

Mapping — Mapping between property and parameter range
cell array

Mapping between property and parameter range, specified as the comma-separated pair
consisting of 'Mapping' and a cell array.

Parameter range mapping specifies a mapping between a property and the associated
parameter range.

The first element of the cell array is a character vector specifying the kind of mapping.
The valid values are 'lin', 'log', 'pow', 'int', and 'enum'. The subsequent

2 Functions in Audio System Toolbox

2-30

elements of the cell array depend on the kind of mapping. The valid mappings depend on
the property data type.
Property Data Type Valid Mappings Default
double 'lin', 'log', 'pow',

'int'
{'lin', 0, 1}

logical 'enum' {'enum', 'off', 'on'}
enumeration class 'enum' enumeration names
Mappin
g

Description Example

'lin' Specifies a linear relationship with
given minimum and maximum values.

property value parameter value() = + - ¥ ()min (max min)

{'lin', 0, 24} specifies a linear
relationship with a minimum of 0 and
maximum of 24.

Simple Example: “Specify Parameter
Information” on page 2-19

'log' Specifies a logarithmic relationship
with given minimum and maximum
values, where the control position
maps to the logarithm of the property
value. The minimum value must be
greater than 0.

property value parameter value() = ¥min (max/ min)
()

{'log', 1, 22050} specifies a
logarithmic relationship with a
minimum of 1 and a maximum of
22050.

Simple Example: “Logarithmic
Parameter Mapping” on page 2-23

'pow' Specifies a power law relationship with
given exponent, minimum, and
maximum values. The property value
is related to the control position raised
to the exponent:

property value parameter value() = + - ¥ ()min (max min)
exp

{'pow', 1/3, -140, 12} specifies a
power law relationship with an
exponent of 1/3, a minimum of –140,
and a maximum of 12.

Simple Example: “Power Parameter
Mapping” on page 2-21

 audioPluginParameter

2-31

Mappin
g

Description Example

'int' Quantizes the control position and
maps it to the range of consecutive
integers with given minimum and
maximum values.

property value floor parameter value() = + + - ¥ ()()0 5. min (max min)

{'int', 0, 3} specifies a linear,
quantized relationship with a
minimum of 0 and maximum of 3. The
property value is mapped as an integer
in the range 0 to 3.

Simple Example: “Integer Parameter
Mapping” on page 2-19

'enum'
(logical)

Optionally provides character vectors
for display on the plugin dialog box.

{'enum','Block
signal','Passthrough'} specifies
the character vector 'Block signal'
if the parameter value is false and
'Passthrough' if the parameter
value is true.

Simple Example: “Enumeration for
Logical Properties Parameter
Mapping” on page 2-25

'enum'
(enume
ration
class)

Optionally provides character vectors
for the members of the enumeration
class.

{'enum', '+6 dB', '-6 dB',
'silence', 'white noise'}
specifies the character vectors '+6
dB', '-6 dB', 'silence', and
'white noise'.

Simple Example: “'enum' for
Enumeration Class Parameter
Mapping” on page 2-27

For nontrivial examples of audio plugin parameter mapping, see “Audio Plugin Example
Gallery”.

2 Functions in Audio System Toolbox

2-32

Definitions

Implementation of Audio Plugin Parameters

Audio plugin parameters are visible and tunable in both the MATLAB and digital audio
workstation (DAW) environments.

MATLAB Environment. Use Audio Test Bench to interact with plugin parameters
in the MATLAB environment.

DAW Environment. Use generateAudioPlugin to deploy your audio plugin to a
DAW environment. The DAW environment determines the exact layout of plugin
parameters as seen by the plugin user.

 audioPluginParameter

2-33

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPlugin | audioPluginSource

Functions
audioPluginInterface | generateAudioPlugin | validateAudioPlugin

Topics
“Design an Audio Plugin”

Introduced in R2016a

2 Functions in Audio System Toolbox

2-34

configureMIDI
Configure MIDI connections between audio object and MIDI controller

Syntax
configureMIDI(audioObject)
configureMIDI(audioObject,propertyName)
configureMIDI(audioObject,propertyName,controlNumber)
configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue)

Description
configureMIDI(audioObject) opens a MIDI configuration user interface (UI). Use
the UI to synchronize parameters of the plugin, audioObject, to MIDI controls on your
default MIDI device. You can also generate MATLAB code corresponding to the MIDI
configuration developed using the configureMIDI UI.

To set your default device, type this syntax in the command line:

setpref midi DefaultDevice deviceNameValue

deviceNameValue is the MIDI device name, assigned by the device manufacturer or
host operating system. Use midiid to get the device name corresponding to your MIDI
device.

configureMIDI(audioObject,propertyName) makes the property, propertyName,
respond to any control on the default MIDI device.

configureMIDI(audioObject,propertyName,controlNumber) makes the property
respond to the MIDI control specified by controlNumber.

configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceNameValue.

 configureMIDI

2-35

Examples

Synchronize Plugin Parameters to MIDI Controls

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

2 Functions in Audio System Toolbox

2-36

4 Repeat steps 2 and 3 as needed to synchronize multiple properties to multiple MIDI
controls.

To disconnect the property and control currently displayed on your configureMIDI
UI, click Reset Control at any time.

5 Click OK.

The specified MIDI controls and properties and now synchronized.

Generate MATLAB Code from configureMIDI UI

Generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI. You can embed the MATLAB code in your simulation so that you do
not need to reopen the UI to restore your chosen MIDI connections.

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

 configureMIDI

2-37

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

4 Select the Generate MATLAB Code check box.

2 Functions in Audio System Toolbox

2-38

5 Click OK. The generated MATLAB code corresponds to the MIDI configuration that
you developed.

 configureMIDI

2-39

Make Plugin Property Respond to Any MIDI Control

Make a plugin property respond to any control on your default MIDI device.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI(parametricEQPlugin,'CenterFrequency1');

Make Plugin Property Respond to Specific MIDI Control on Default MIDI Device

Make a plugin property respond to a specific MIDI control on your default MIDI device.

Create an object of the audio plugin example
audiopluginexample.ParametricEqualizer.

2 Functions in Audio System Toolbox

2-40

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

Use midiid to identify a MIDI control to synchronize with your property.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1003

device =

nanoKONTROL2

Use configureMIDI to synchronize your chosen MIDI control, specified by
controlNumber, with a property.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber);

Make Plugin Property Respond to Specific MIDI Control on a Specific MIDI Device

Make a plugin property respond to any control on your default MIDI device.

Create an object of the audio plugin example,
audiopluginexample.ParametricEqualizer.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

Use midiid to identify a specific MIDI control on a specific MIDI device.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1003

 configureMIDI

2-41

device =

nanoKONTROL2

Use configureMIDI to synchronize a property with your chosen MIDI control, specified
by controlNumber, on your chosen MIDI device, specified by device.
configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber,'DeviceName',device)

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio System Toolbox System object.

propertyName — Name of object property
character vector

Name of the object property, specified as a character vector. Enter the property name
exactly as it is defined in the property section of your audio plugin or Audio System
Toolbox System object.

controlNumber — MIDI device control number
integer values

MIDI device control number, specified as an integer. The value is assigned to the control
by the device manufacturer. It is used for identification purposes.

deviceNameValue — MIDI device name
character vector

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a character vector. If you do not specify a MIDI device name, the default
MIDI device is used.

2 Functions in Audio System Toolbox

2-42

Limitations
For MIDI connections established by configureMIDI, moving a MIDI control sends a
callback to update the associated property values. To synchronize your MIDI device in an
audio stream loop, you might need to use the drawnow command for the callback to
process immediately. For efficiency, use the drawnow limitrate syntax.

For example, to synchronize your MIDI device and audio object, uncomment the
drawnow limitrate command from this code:

fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter;
dRC = compressor;

configureMIDI(compressor,'Threshold');

while ~isDone(fileReader)
 input = fileReader();
 output = dRC(input);
 deviceWriter(output);
% drawnow limitrate;
end

release(fileReader);
release(deviceWriter);

If your audio stream loop includes visualizing data on a scope, such as
dsp.SpectrumAnalyzer, dsp.TimeScope, or dsp.ArrayPlot, the drawnow command
is not required.

See Also
Classes
audioPlugin | audioPluginSource

Functions
disconnectMIDI | getMIDIConnections | midicallback | midicontrols |
midiid | midiread | midisync

 configureMIDI

2-43

Topics
“MIDI Control for Audio Plugins”
“Musical Instrument Digital Interface (MIDI)”

Introduced in R2016a

2 Functions in Audio System Toolbox

2-44

designParamEQ
Design parametric equalizer

Syntax
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth)
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode)

Description
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth) designs an Nth-order
parametric equalizer with specified gain, center frequency, and bandwidth. B and A are
matrices of numerator and denominator coefficients, with columns corresponding to
cascaded second-order section (SOS) filters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode) specifies whether
the parametric equalizer is implemented with second-order sections or fourth-order
sections (FOS).

Examples

Design Two-Band Parametric Equalizer

Specify the filter order, peak gain in dB, normalized center frequencies, and normalized
bandwidth of the bands of your parametric equalizer.

N = [2,4];
gain = [6,-4];
centerFreq = [0.25,0.75];
bandwidth = [0.12,0.10];

Generate the filter coefficients using the specifed parameters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

 designParamEQ

2-45

Create a filter matrix compatible with fvtool.

SOS = [B',[ones(sum(N)/2,1),A']];

Visualize your filter design.

fvtool(SOS)

Filter Audio Using SOS Parametric Equalizer

Design a second-order sections (SOS) parametric equalizer using designParamEQ, and
filter an audio stream.

2 Functions in Audio System Toolbox

2-46

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav',...
 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = fileReader();
 deviceWriter(audio);
 count = count+1;
end
reset(fileReader);

Design a SOS parametric equalizer.

N = [4,4];
gain = [-25,35];
centerFreq = [0.01,0.5];
bandwidth = [0.35,0.5];
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];
fvtool(SOS,...
 'Fs',fileReader.SampleRate,...
 'FrequencyScale','Log');

 designParamEQ

2-47

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port',...
 'ScaleValuesInputPort',false);

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'FrequencyResolutionMethod','WindowLength',...

2 Functions in Audio System Toolbox

2-48

 'WindowLength',frameSize,...
 'Title','Original and Equalized Signals',...
 'ShowLegend',true,...
 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count+1;
end

release(scope)
release(deviceWriter)
release(fileReader)

 designParamEQ

2-49

Filter Audio Using FOS Parametric Equalizer

Design a fourth-order sections (FOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

2 Functions in Audio System Toolbox

2-50

 'RockGuitar-16-44p1-stereo-72secs.wav',...
 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
 x = fileReader();
 deviceWriter(x);
 count = count+1;
end
reset(fileReader);

Design FOS parametric equalizer coefficients.

N = [2,4];
gain = [5,10];
centerFreq = [0.025,0.65];
bandwidth = [0.025,0.35];
mode = 'fos';

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode);

Construct FOS IIR filters.

section1 = dsp.IIRFilter('Numerator',B(:,1)','Denominator',[1,A(:,1)']);
section2 = dsp.IIRFilter('Numerator',B(:,2)','Denominator',[1,A(:,2)']);

Visualize the frequency response of your parametric equalizer.

[H1,w] = freqz(section1,8192,sampleRate);
H2 = freqz(section2,8192,sampleRate);

H = 20.*log10(abs(H1.*H2));

semilogx(w,H);
title('Magnitude Response (dB)')

 designParamEQ

2-51

xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
grid on

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'FrequencyResolutionMethod','WindowLength',...
 'WindowLength',frameSize,...
 'Title','Original and Equalized Signals',...

2 Functions in Audio System Toolbox

2-52

 'ShowLegend',true,...
 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal, and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 x = fileReader();
 y = section1(x);
 z = section2(y);

 scope([x(:,1),z(:,1)]);

 deviceWriter(z);

 count = count + 1;
end

release(fileReader)
release(deviceWriter)
release(scope)

 designParamEQ

2-53

Input Arguments
N — Filter order
scalar | row vector

Filter order, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be even integers.

gain — Peak gain (dB)
scalar | row vector

Peak gain in dB, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be real-valued.

2 Functions in Audio System Toolbox

2-54

centerFreq — Normalized center frequency of equalizer bands
scalar | row vector

Normalized center frequency of equalizer bands, specified as a scalar or row vector of real
values in the range 0 to 1, where 1 corresponds to the Nyquist frequency (π rad/sample).
If centerFreq is specified as a row vector, separate equalizers are designed for each
element of centerFreq.

bandwidth — Normalized bandwidth
scalar | row vector

Normalized bandwidth, specified as a scalar or row vector the same length as
centerFreq. Elements of the vector are specified as real values in the range 0 to 1,
where 1 corresponds to the Nyquist frequency (π rad/sample).

Normalized bandwidth is measured at gain/2 dB. If gain is set to -Inf (notch filter),

normalized bandwidth is measured at the 3 dB attenuation point: 10 0 510¥ ()log . .

To convert octave bandwidth to normalized bandwidth, calculate the associated Q-factor
as

Q

octave bandwidth

octave bandwidth
=

-

()

()

2

2 1

.

Then convert to bandwidth

bandwidth
centerFreq

Q
= .

mode — Design mode
'sos' (default) | 'fos'

Design mode, specified as 'sos' or 'fos'.

• 'sos' — Implements your equalizer as cascaded second-order filters.
• 'fos' — Implements your equalizer as cascaded fourth-order filters. Because fourth-

order sections do not require the computation of roots, they are generally more
computationally efficient.

 designParamEQ

2-55

Output Arguments
B — Numerator filter coefficients
matrix

Numerator filter coefficients, returned as a matrix. Each column of B corresponds to the
numerator coefficients of a different second-order or fourth-order section of your cascaded
equalizer.

A — Denominator filter coefficients
matrix

Denominator filter coefficients, returned as a matrix. Each column of A corresponds to
the denominator coefficients of a different second-order or fourth-order section of your
cascaded equalizer.

A does not include the leading unity coefficient for each section.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
designShelvingEQ | designVarSlopeFilter

System Objects
dsp.BiquadFilter | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

2 Functions in Audio System Toolbox

2-56

Introduced in R2016a

 designParamEQ

2-57

designShelvingEQ
Design shelving equalizer

Syntax
[B,A] = designShelvingEQ(gain,slope,Fc)
[B,A] = designShelvingEQ(gain,slope,Fc,type)

Description
[B,A] = designShelvingEQ(gain,slope,Fc) designs a low-shelf equalizer with the
specified gain, slope, and cutoff frequency, Fc. The equalizer is returned as cascaded
second-order section (SOS) IIR filters.

[B,A] = designShelvingEQ(gain,slope,Fc,type) specifies the design type as a
low-shelving or high-shelving equalizer.

Examples

Design Low-Shelf Equalizer

Design three second-order IIR low-shelf equalizers using designShelvingEQ. The three
shelving equalizers use three separate slope specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain = 5;

slope1 = 0.5;
slope2 = 0.75;
slope3 = 1;

2 Functions in Audio System Toolbox

2-58

Fc = 1000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain,slope1,Fc);
[B2,A2] = designShelvingEQ(gain,slope2,Fc);
[B3,A3] = designShelvingEQ(gain,slope3,Fc);

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];
SOS2 = [B2',[1,A2']];
SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(...
 dsp.BiquadFilter('SOSMatrix',SOS1),...
 dsp.BiquadFilter('SOSMatrix',SOS2),...
 dsp.BiquadFilter('SOSMatrix',SOS3),...
 'Fs',Fs,...
 'FrequencyScale','Log');

legend('slope = 0.1',...
 'slope = 0.5',...
 'slope = 1');

 designShelvingEQ

2-59

Filter Audio Using Low-Shelf Equalizer

Design a low-shelf equalizer, and then use it to filter an audio signal.

Construct audio file reader and audio device writer objects. Use the sample rate of the
reader as the sample rate of the writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav',...

2 Functions in Audio System Toolbox

2-60

 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = step(fileReader);
 play(deviceWriter,audio);
 count = count+1;
end
reset(fileReader)

Design a second-order sections (SOS) low-shelf equalizer.

gain = 10;
slope = 3;
Fc = 0.025;

[B,A] = designShelvingEQ(gain,slope,Fc);

Visualize your equalizer design.

SOS = [B',[1,A']];
fvtool(dsp.BiquadFilter('SOSMatrix',SOS),...
 'Fs',fileReader.SampleRate,...
 'FrequencyScale','Log');

 designShelvingEQ

2-61

Construct a biquad filter object.

myFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port',...
 'ScaleValuesInputPort',false);

Construct a spectrum analyzer object to visualize the original audio signal and the audio
signal passed through your low-shelf equalizer.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'FrequencyResolutionMethod','WindowLength',...

2 Functions in Audio System Toolbox

2-62

 'WindowLength',frameSize,...
 'Title','Original and Equalized Signal',...
 'ShowLegend',true,...
 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the equalized audio signal and visualize the original and equalized spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count+1;
end

release(fileReader)
release(scope)
release(deviceWriter)

 designShelvingEQ

2-63

Design High-Shelf Equalizer

Design three second-order IIR high shelf equalizers using designShelvingEQ. The
three shelving equalizers use three separate gain specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB
Fs = 44.1e3;

gain1 = -6;
gain2 = 6;
gain3 = 12;

2 Functions in Audio System Toolbox

2-64

slope = 0.8;

Fc = 18000/(Fs/2);

Design the filter coefficents using the specified parameters.

[B1,A1] = designShelvingEQ(gain1,slope,Fc,'hi');
[B2,A2] = designShelvingEQ(gain2,slope,Fc,'hi');
[B3,A3] = designShelvingEQ(gain3,slope,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];
SOS2 = [B2',[1,A2']];
SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(dsp.BiquadFilter('SOSMatrix',SOS1),...
 dsp.BiquadFilter('SOSMatrix',SOS2),...
 dsp.BiquadFilter('SOSMatrix',SOS3),...
 'Fs',Fs);
legend('gain = -6 dB',...
 'gain = 6 dB',...
 'gain = 12 dB',...
 'Location','NorthWest')

 designShelvingEQ

2-65

Input Arguments
gain — Peak gain (dB)
real scalar in the range –12 to 12

Peak gain in dB, specified as a real scalar in the range –12 to 12.

slope — Slope coefficient
real scalar in the range 0 to 5

Slope coefficient, specified as a real scalar in the range 0 to 5.

2 Functions in Audio System Toolbox

2-66

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).

Normalized cutoff frequency is implemented as half the shelving filter gain, or gain/2
dB.

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'— Low shelving equalizer
• 'hi'— High shelving equalizer

Output Arguments
B — Numerator filter coefficients
three-element column vector

Numerator filter coefficients of the designed second-order IIR filter, retuned as a three-
element column vector.

A — Denominator filter coefficients
two-element column vector.

Denominator filter coefficients of the designed second-order IIR filter, returned as a two-
element column vector. A does not include the leading unity coefficient.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 designShelvingEQ

2-67

See Also
Functions
designParamEQ | designVarSlopeFilter

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

2 Functions in Audio System Toolbox

2-68

designVarSlopeFilter
Design variable slope lowpass or highpass IIR filter

Syntax
[B,A] = designVarSlopeFilter(slope,Fc)
[B,A] = designVarSlopeFilter(slope,Fc,type)

Description
[B,A] = designVarSlopeFilter(slope,Fc) designs a lowpass filter with the
specified slope and cutoff frequency. B and A are matrices of numerator and denominator
coefficients, with columns corresponding to cascaded second-order sections (SOS).

[B,A] = designVarSlopeFilter(slope,Fc,type) specifies the design type as a
lowpass or highpass filter.

Examples

Design Lowpass IIR Filter

Design two second-order section (SOS) lowpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency, slope, and normalized cutoff frequency for two lowpass
IIR filters. The sampling frequency is in Hz. The slope is in dB/octave.

Fs = 48e3;

slope = 18;

Fc1 = 10000/(Fs/2);
Fc2 = 16000/(Fs/2);

 designVarSlopeFilter

2-69

Design the filter coefficients using the specified parameters.

[B1,A1] = designVarSlopeFilter(slope,Fc1);
[B2,A2] = designVarSlopeFilter(slope,Fc2);

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];
SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,'Fs',Fs);

legend('Fc = 10000 Hz',...
 'Fc = 16000 Hz',...
 'Location','SouthWest');

2 Functions in Audio System Toolbox

2-70

Process Audio Using Lowpass Filter

Design a second-order section (SOS) lowpass IIR filter using designVarSlopeFilter.
Use your lowpass filter to process an audio signal.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...

 designVarSlopeFilter

2-71

 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = fileReader();
 deviceWriter(audio);
 count = count+1;
end
reset(fileReader);

Design a lowpass filter with a 12 dB/octave slope and a 0.15 normalized frequency cutoff.

[B,A] = designVarSlopeFilter(12,0.15);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];
fvtool(SOS, ...
 'Fs',sampleRate);

2 Functions in Audio System Toolbox

2-72

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

Construct a spectrum analyzer System object to visualize the original audio signal and
the audio signal passed through your lowpass filter.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...

 designVarSlopeFilter

2-73

 'WindowLength',frameSize, ...
 'Title','Original and Equalized Signal', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original Signal','Filtered Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 originalSignal = fileReader();
 filteredSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),filteredSignal(:,1)]);
 deviceWriter(filteredSignal);
 count = count+1;
end

2 Functions in Audio System Toolbox

2-74

Design Highpass IIR Filter

Design two second-order section (SOS) highpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency in Hz, the slope in dB/octave, and the normalized cutoff
frequency.

Fs = 48e3;
slope1 = 18;
slope2 = 36;
Fc = 4000/(Fs/2);

 designVarSlopeFilter

2-75

Design the filter coefficients using the specifed parameters.

[B1,A1] = designVarSlopeFilter(slope1,Fc,'hi');
[B2,A2] = designVarSlopeFilter(slope2,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];
SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,...
 'Fs',Fs,...
 'FrequencyScale','Log');
legend('slope = 18 dB/octave',...
 'slope = 36 dB/octave',...
 'Location','NorthWest')

2 Functions in Audio System Toolbox

2-76

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in words beginning with p, d, and g sounds. Plosives can be emphasized by
the recording process and are often displeasurable to hear. In this example, you minimize
the plosives of a speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and a audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Play the
unprocessed signal. Then release the file reader and device writer.

 designVarSlopeFilter

2-77

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Plosives.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
'Property' and use the default 0 dB MakeUpGain property value. Create a time scope
to visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');
biquadFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',250, ...
 'CrossoverSlopes',48);

dRCompressor = compressor(...
 'Threshold',-35, ...
 'Ratio',10, ...
 'KneeWidth',20, ...
 'AttackTime',1e-4, ...
 'ReleaseTime',3e-1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',3, ...
 'BufferLength',fileReader.SampleRate*3*2, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...

2 Functions in Audio System Toolbox

2-78

 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRCompressor)

 designVarSlopeFilter

2-79

Input Arguments
slope — Filter slope (dB/octave)
real scalar in the range [0:6:48]

2 Functions in Audio System Toolbox

2-80

Filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded.

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'— Lowpass filter
• 'hi'— Highpass filter

Output Arguments
B — Numerator filter coefficients
3-by-4 matrix

Numerator filter coefficients, returned as a 3-by-4 matrix. Each column of B corresponds
to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

A — Denominator filter coefficients
2-by-4 matrix

Denominator filter coefficients, returned as a 2-by-4 matrix. Each column of A
corresponds to the denominator coefficients of a different second-order section of your
cascaded IIR filter.

A does not include the leading unity coefficient for each section.

 designVarSlopeFilter

2-81

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
designParamEQ | designShelvingEQ

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

2 Functions in Audio System Toolbox

2-82

disconnectMIDI
Disconnect MIDI controls from audio object

Syntax
disconnectMIDI(audioObject)

Description
disconnectMIDI(audioObject) disconnects MIDI controls from your audio object,
audioObject. Only those MIDI connections established using configureMIDI are
disconnected.

Examples

Disconnect MIDI Controls from Audio Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoPlugin = audiopluginexample.Echo;

Get the MIDI connections of echoPlugin and verify that it has no MIDI connections.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Add MIDI connections using configureMIDI.

configureMIDI(echoPlugin,'Delay1');

 disconnectMIDI

2-83

Get the MIDI connections of echoPlugin using getMIDIConnections. The MIDI
connections you configured are saved as a structure. View details of the MIDI
connections using dot notation.

myMIDIConnections = getMIDIConnections(echoPlugin);
myMIDIConnections.Delay1

ans =

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'any control on 'BCF2000''

Use disconnectMIDI to remove MIDI connections between your echoPlugin object
and your MIDI device.

disconnectMIDI(echoPlugin);

Get MIDI connections of echoPlugin and verify that you have successfully disconnected
MIDI controls from your plugin.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio System Toolbox System object.

See Also
Classes
audioPlugin | audioPluginSource

2 Functions in Audio System Toolbox

2-84

Functions
configureMIDI | getMIDIConnections | midicallback | midicontrols | midiid
| midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“Musical Instrument Digital Interface (MIDI)”

Introduced in R2016a

 disconnectMIDI

2-85

fdesign.parameq
Parametric equalizer filter specification

Syntax
d = fdesign.parameq(spec, specvalue1, specvalue2, ...)
d = fdesign.parameq(... fs)

Description
d = fdesign.parameq(spec, specvalue1, specvalue2, ...) constructs a
parametric equalizer filter design object, where spec is a non-case sensitive character
vector. The choices for spec are as follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)
• 'F0, BW, BWst, Gref, G0, GBW, Gst'
• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'
• 'N, F0, BW, Gref, G0, GBW'
• 'N, F0, BW, Gref, G0, GBW, Gp'
• 'N, F0, Fc, Qa, G0'
• 'N, F0, Fc, S, G0'
• 'N, F0 ,BW, Gref, G0, GBW, Gst'
• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

2 Functions in Audio System Toolbox

2-86

Paramete
r

Definition Unit

BW Bandwidth
BWp Passband Bandwidth
BWst Stopband Bandwidth
Gref Reference Gain decibels
G0 Center Frequency Gain decibels
GBW Gain at which Bandwidth

(BW) is measured
decibels

Gp Passband Gain decibels
Gst Stopband Gain decibels
N Filter Order
F0 Center Frequency
Fc Cutoff Frequency
Fhigh Higher Frequency at Gain

GBW

Flow Lower Frequency at Gain
GBW

Qa Quality Factor
S Slope Parameter for

Shelving Filters

Regardless of the specification chosen, there are some conditions that apply to the
specification parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels
• To boost the input signal, set G0 > Gref; to cut, set Gref > G0
• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW < Gst <

Gref
• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. fs must be
specified as a scalar trailing the other numerical values provided, and is assumed to be in
Hz.

 fdesign.parameq

2-87

Examples

Design Parametric Equalizers

Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB.

parametricEQ = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst', ...
 4,0.3,0.5,0,-12,-10,-1);

parametricEQBiquad = design(parametricEQ,'cheby2','SystemObject',true);
fvtool(parametricEQBiquad)

2 Functions in Audio System Toolbox

2-88

Design a 4th-order lowpass shelving filter with a normalized cutoff frequency of 0.25, a
quality factor of 10, and an 8 dB boost gain.

parametricEQ = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);
parametricEQBiquad = design(parametricEQ,'SystemObject',true);
fvtool(parametricEQBiquad)

Design 4th-order highpass shelving filters with slopes of 1.5 and 3.

N = 4; % Filter order
F0 = 1; % Center Frequency
Fc = 0.4; % Cutoff Frequency
G0 = 10; % Center Frequency Gain (dB)

 fdesign.parameq

2-89

S1 = 1.5; % Slope for filter design 1
S2 = 3; % Slope for filter design 2

filter = fdesign.parameq('N,F0,Fc,S,G0',N,F0,Fc,S1,G0);
filterDesignS1 = design(filter,'SystemObject',true);

filter.S = S2;
filterDesignS2 = design(filter,'SystemObject',true);

filterVisualization = fvtool(filterDesignS1,filterDesignS2);
legend(filterVisualization,'Slope = 1.5','Slope = 3');

2 Functions in Audio System Toolbox

2-90

See Also
design | designParamEQ | designShelvingEQ | designVarSlopeFilter |
fdesign | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

 fdesign.parameq

2-91

generateAudioPlugin
Generate audio plugin from MATLAB class

Syntax
generateAudioPlugin className
generateAudioPlugin options className

Description
generateAudioPlugin className generates a VST 2 audio plugin from a MATLAB
class specified by className. See Supported Compilers for a list of compilers supported
by generateAudioPlugin.

generateAudioPlugin options className specifies nondefault output folder,
plugin name, or file type. Options can be specified in any grouping, and in any order.

Examples

Generate Audio Plugin

generateAudioPlugin audiopluginexample.Echo

A VST 2 plugin named Echo is saved to your current folder. The extension of your plugin
depends on your operating system.

Specify Output Folder for Generated Plugin

generateAudioPlugin -outdir myPluginFolder audiopluginexample.Echo

2 Functions in Audio System Toolbox

2-92

https://www.mathworks.com/support/compilers.html

A VST 2 plugin named Echo is saved to your specified folder. The extension of your
plugin depends on your operating system.

Specify File Name of Generated Plugin

generateAudioPlugin -output awesomeEffect audiopluginexample.Echo

A VST 2 plugin named awesomeEffect is saved to your current folder. The extension of
your plugin depends on your operating system.

Specify Output Folder and File Name of Generated Plugin

generateAudioPlugin -output coolEffect -outdir myPluginFolder audiopluginexample.Echo

A VST 2 plugin named coolEffect is saved to your specified folder. The extension of
your plugin depends on your operating system.

Generate win32 Plugin from win64 System

generateAudioPlugin -win32 audiopluginexample.Echo

A 32-bit VST 2 plugin named Echo.dll is saved to your current folder.

Input Arguments
options — Options to specify output folder, plugin name, and file type
-outdir folder | -output pluginName | -win32

Options can be specified in any grouping, and in any order.
Option Description
-outdir folder Generates a plugin to a specific folder. By default, the

generated plugin is placed in the current folder. If
folder is not in the current directory, specify the exact
path.

 generateAudioPlugin

2-93

Option Description
-output pluginName Specifies the file name of the generated plugin. The

appropriate extension is appended to the pluginName
based on the platform on which the plugin is generated.
By default, the plugin is named after the class.

-win32 Creates a 32-bit audio plugin. Valid only on win64.

className — Name of the plugin class to generate
plugin class

Name of the plugin class to generate. The plugin class must be on the MATLAB path. It
must derive from either the audioPlugin class or the audioPluginSource class.

Note className is not the name of a file. Arguments such as 'myPlugin.m' issue an
error.

Limitations
Build problems can occur when using folder names with spaces. For more information,
see “Enable Build Process for Folder Names with Spaces” (Simulink Coder) and Why is
the build process failing for a shipped model in Simulink or for a model run in
Accelerator mode?.

Definitions

Generated Plugin File Extension

The extension of your generated plugin depends on your operating system.
Operating System File Extension
Windows .dll
OSX .vst

2 Functions in Audio System Toolbox

2-94

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

See Also
Apps
Audio Test Bench

Functions
loadAudioPlugin | validateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Design an Audio Plugin”
“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

 generateAudioPlugin

2-95

integratedLoudness
Measure integrated loudness and loudness range

Syntax
loudness = integratedLoudness(audioIn,Fs)
loudness = integratedLoudness(audioIn,Fs,channelWeights)
[loudness,loudnessRange] = integratedLoudness(___)

Description
loudness = integratedLoudness(audioIn,Fs) returns the integrated loudness of
an audio signal, audioIn, with sample rate Fs. The ITU-R BS.1770-4 and EBU R 128
standards define the algorithms to calculate integrated loudness.

loudness = integratedLoudness(audioIn,Fs,channelWeights) specifies the
channel weights used to compute the integrated loudness. channelWeights must be a
row vector with the same number of elements as the number of channels in audioIn.

[loudness,loudnessRange] = integratedLoudness(___) returns the loudness
range of the audio signal using either of the previous syntaxes. The EBU R 128 Tech
3342 standard defines the loudness range computation.

Examples

Determine Integrated Loudness

Determine the integrated loudness of an audio signal.

Create a two-second sine wave with a 0 dB amplitude, a 1 kHz frequency, and a 48 kHz
sample rate.

sampleRate = 48e3;
increment = sampleRate*2;

2 Functions in Audio System Toolbox

2-96

amplitude = 10^(0/20);
frequency = 1e3;

sineGenerator = audioOscillator(...
 'SampleRate',sampleRate,...
 'SamplesPerFrame',increment,...
 'Amplitude',amplitude,...
 'Frequency', frequency);

signal = sineGenerator();

Calculate the integrated loudness of the audio signal at the specified sample rate.

loudness = integratedLoudness(signal,sampleRate)

loudness =

 -3.0036

Specify Nondefault Channel Weights

Read in a four-channel audio signal. Specify a nondefault weighting vector with four
elements.

[signal,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');
weightingVector = [1,0.8,0.8,1.2];

Calculate the integrated loudness with the default channel weighting and the nondefault
channel weighting vector.

standardLoudness = integratedLoudness(signal,fs,weightingVector)
nonStandardLoudness = integratedLoudness(signal,fs)

standardLoudness =

 -11.6825

nonStandardLoudness =

 integratedLoudness

2-97

 -11.0121

Determine Loudness Range

Read in an audio signal. Clip 3 five-second intervals out of the signal.

[x,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
x1 = x(1:fs*5,:);
x2 = x(5e5:5e5+5*fs,:);
x3 = x(end-5*fs:end,:);

Calculate the loudness and loudness range of the total signal and of each interval.

[L,LRA] = integratedLoudness(x,fs);
[L1,LRA1] = integratedLoudness(x1,fs);
[L2,LRA2] = integratedLoudness(x2,fs);
[L3,LRA3] = integratedLoudness(x3,fs);

fprintf(['Loudness: %0.2f\n',...
 'Loudness range: %0.2f\n\n',...
 'Beginning loudness: %0.2f\n',...
 'Beginning loudness range: %0.2f\n\n',...
 'Middle loudness: %0.2f\n',...
 'Middle loudness range: %0.2f\n\n',...
 'End loudness: %0.2f\n',...
 'End loudness range: %0.2f\n'],...
 L,LRA,L1,LRA1,L2,LRA2,L3,LRA3);

Loudness: -22.98
Loudness range: 1.50

Beginning loudness: -23.38
Beginning loudness range: 1.18

Middle loudness: -22.97
Middle loudness range: 1.14

2 Functions in Audio System Toolbox

2-98

End loudness: -22.10
End loudness range: 1.82

Input Arguments
audioIn — Input signal
matrix

Input signal, specified as a matrix. The columns of the matrix are treated as audio
channels.

The maximum number of columns of the input signal depends on your channelWeights
specification:

• If you use the default channelWeights, the input signal has a maximum of five
channels. Specify the channels in this order: [Left, Right, Center, Left surround,
Right surround].

• If you specify nondefault channelWeights, the input signal must have the same
number of columns as the number of elements in the channelWeights vector.

Data Types: single | double

Fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

channelWeights — Linear weighting applied to each input channel
[1.0, 1,0, 1.0, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative
values. The number of elements in the row vector must be equal to or greater than the
number of input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the channels of the audioIn matrix in this order: [Left, Right,
Center, Left surround, Right surround].

 integratedLoudness

2-99

It is a best practice to specify the channelWeights vector in order: [Left, Right, Center,
Left surround, Right surround].
Data Types: single | double

Output Arguments
loudness — Integrated loudness (LUFS)
scalar

Integrated loudness in loudness units relative to full scale (LUFS), returned as a scalar.

The ITU-R BS.1770-4 and EBU R 128 standards define the integrated loudness. The
algorithm computes the loudness by breaking down the audio signal into 0.4-second
segments with 75% overlap. If the input signal is less than 0.4 seconds, loudness is
returned empty.
Data Types: single | double

loudnessRange — Loudness range (LU)
scalar

Loudness range in loudness units (LU), returned as a scalar.

The EBU R 128 Tech 3342 standard defines the loudness range. The algorithm computes
the loudness range by breaking down the audio into 3-second segments with 2.9-second
overlap. If the input signal is less than three seconds, loudnessRange is returned
empty.
Data Types: single | double

Algorithms
The integratedLoudness function returns the integrated loudness and loudness range
(LRA) of an audio signal. You can specify any number of channels and nondefault
channel weights used for loudness measurements. The integratedLoudness algorithm
is described for the general case of n channels.

2 Functions in Audio System Toolbox

2-100

Integrated Loudness and Loudness Range

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted
filter shapes the frequency spectrum to reflect perceived loudness.

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

mP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• mPi is the momentary power of the ith segment of a channel.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mL G mP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.
3 The momentary power is gated using the momentary loudness calculation:

 integratedLoudness

2-101

mP mPi jÆ

j i mLi= ≥ -{ }70

4 The relative threshold, Γ, is computed:

G = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

=
Â0 691 10 1010

1

. log G lc c

c

n

lc is the mean momentary power of channel c:

l
j

mPc j c
j

= ()Â
1

,

5 The momentary power subset, mPj, is gated using the relative threshold:
mP mPj kÆ

k j mPj= ≥{ }G

6 The momentary power segments are averaged:

P
k

mPk

k

= Â
1

7 The integrated loudness is computed by passing the mean momentary power subset,
P, through the Compute Loudness system:

Integrated Loudness = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â0 691 10 10

1

. log G P LUFSc c

c

n

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

sP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 Functions in Audio System Toolbox

2-102

2 The short-term loudness, sL, is computed for each segment:

sL G sPi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.
3 The short-term loudness is gated using an absolute threshold:

sL sLi jÆ

j i sLi= ≥ -{ }70

4 The gated short-term loudness is converted back to linear, and then the mean is
taken:

sP
j

j

sL

j

j

=
Ê
Ë
Á

ˆ
¯
˜

Â1
10

10

The relative threshold, K, is computed:
K sPj= - + ()20 10 10log

5 The short-term loudness subset, sLj, is gated using the relative threshold:
sL sLj kÆ

k j sL Kj= ≥{ }

6 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as
between the 10th and 95th percentiles of the distribution, and is returned in
loudness units (LU).

References

[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to
Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.
1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum
Level of Audio Signals. EBU R 128. 2014.

 integratedLoudness

2-103

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
System Objects
loudnessMeter | weightingFilter

Blocks
Loudness Meter

Introduced in R2016b

2 Functions in Audio System Toolbox

2-104

getMIDIConnections
Get MIDI connections of audio object

Syntax
connectionInfo = getMIDIConnections(audioObject)

Description
connectionInfo = getMIDIConnections(audioObject) returns a structure,
connectionInfo, containing information about the MIDI connections for your audio
object, audioObject. Only those MIDI connections established using configureMIDI
are returned.

The connectionInfo structure contains a substructure for each tunable property of
audioObject that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Examples

Get MIDI Connections of Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoEffect = audiopluginexample.Echo;

Use configureMIDI to synchronize echoEffect properties with specific MIDI controls
on the default MIDI device.

configureMIDI(echoEffect,'Delay1',1001);
configureMIDI(echoEffect,'Gain1' ,1002);
configureMIDI(echoEffect,'Delay2',1003);
configureMIDI(echoEffect,'Gain2' ,1004);

 getMIDIConnections

2-105

Use getMIDIConnections to view the MIDI connections you established.

connectionInfo = getMIDIConnections(echoEffect)

connectionInfo =

 Delay1: [1x1 struct]
 Gain1: [1x1 struct]
 Delay2: [1x1 struct]
 Gain2: [1x1 struct]

View details of the Delay1 MIDI connection using dot notation.

connectionInfo.Delay1

ans =

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'control 1001 on 'nanoKONTROL2''

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio System Toolbox System object.

Output Arguments
connectionInfo — Information about MIDI connection
structure

Information about MIDI connection between the specified audio plugin object and MIDI
devices, returned as a structure. Only those MIDI connections established using
configureMIDI are returned. The connectionInfo structure contains a substructure
for each established MIDI connection. Each substructure contains the control number,
the device name of the corresponding MIDI control, and the property mapping
information (mapping rule, minimum value, and maximum value).

2 Functions in Audio System Toolbox

2-106

See Also
Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | midicallback | midicontrols | midiid |
midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“Musical Instrument Digital Interface (MIDI)”

Introduced in R2016a

 getMIDIConnections

2-107

loadAudioPlugin
Load VST, VST3, and AU plugins into MATLAB environment

Syntax
hostedPlugin = loadAudioPlugin(pluginpath)

Description
hostedPlugin = loadAudioPlugin(pluginpath) loads the 64-bit VST, VST3, or AU
audio plugin specified by pluginpath.

Your hosted plugin has two display modes: Parameters and Properties. The default
display mode is Properties.

• Parameters –– Interact with normalized parameter values of the hosted plugin using
set and get functions.

• Properties –– Interact with heuristically interpreted parameters with real-world
values. You can use standard dot notation to set and get the values while using this
mode.

You can specify the display mode of the hosted plugin using standard dot notation, for
example:
hostedPlugin.DisplayMode = 'Parameters';

See “Host External Audio Plugins” for a discussion of display modes and a walkthrough
of both modes of interaction.

You can interact with and exercise the hosted plugin using the following functions.

Process Audio

• audioOut = process(hostedPlugin,audioIn)

Returns an audio signal processed according to the algorithm and parameters of the
hosted plugin. For source plugins, call process without an audio input.

2 Functions in Audio System Toolbox

2-108

Set and Get Normalized Parameter Values

• value = getParameter(hostedPlugin,parameter)

Returns the normalized value of the specified hosted plugin parameter. Normalized
values are in the range [0,1]. You can specify a parameter by its name or by its index.
To specify the name, use a character vector.

• setParameter(hostedPlugin,parameter,newValue)

Sets the normalized value of the specified hosted plugin parameter to newValue.
Normalized values are in the range [0,1].

Get High-Level Information About the Hosted Plugin

• dispParameter(hostedPlugin)

Displays all parameters and associated indices, values, displayed values, and display
labels of the hosted plugin.

• pluginInfo = info(hostedPlugin)

Returns a structure containing information about the hosted plugin.

Set the Environment in Which the Plugin Is Run

• frameSize = getSamplesPerFrame(hostedPlugin)

Returns the frame size that the hosted plugin returns in subsequent calls to its
processing function (source plugins only).

• setSamplesPerFrame(hostedPlugin,frameSize)

Sets the frame size that the hosted plugin must return in subsequent calls to its
processing function (source plugins only).

• setSampleRate(hostedPlugin,sampleRate)

Sets the sample rate of the hosted plugin.
• sampleRate = getSampleRate(hostedPlugin)

Returns the sample rate in Hz at which the plugin is being run.

 loadAudioPlugin

2-109

Examples

Host External Plugins in MATLAB

Use loadAudioPlugin to host a VST external plugin and a VST external source plugin
in MATLAB®.

Use the fullfile command to determine the full path to the oscillator VST plugin and
parametric equalizer VST plugin included with Audio System Toolbox™. If you are using
a Mac, replace the .dll file extension with .vst.

oscPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
EQPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

Create external plugin objects by calling loadAudioPlugin for each of the plugin paths.

hostedSourcePlugin = loadAudioPlugin(oscPluginPath);
hostedPlugin = loadAudioPlugin(EQPluginPath);

Hosted plugins derive from either the externalAudioPlugin or
externalAudioSourcePlugin class. Because oscillator.dll is a source audio
plugin, the hosted object derives from externalAudioSourcePlugin. Use class() to
verify the classes of the hosted plugins.

class(hostedPlugin)

ans =

 'externalAudioPlugin'

class(hostedSourcePlugin)

ans =

 'externalAudioPluginSource'

2 Functions in Audio System Toolbox

2-110

Call the hosted plugins to display basic information about them. This information
includes the format, the plugin name, the number of channels in and out, and the
tunable properties of the plugin. Source plugins also display the frame size of the plugin.

hostedSourcePlugin
hostedPlugin

hostedSourcePlugin =

 VST plugin 'oscillator' source, 1 out, 256 samples

 Frequency: 100 Hz
 Amplitude: 1 AU
 DCOffset: 0 AU

hostedPlugin =

 VST plugin 'ParametricEQ' 2 in, 2 out

 LowPeakGain: 0 dB
 LowCenterFrequency: 100 Hz
 LowQFactor: 2
 MediumPeakGain: 0 dB
 MediumCenterFrequency: 1000 Hz
 MediumQFactor: 2
 HighPeakGain: 0 dB
 HighCenterFrequency: 10000 Hz
 HighQFactor: 2

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a
Mac, replace the .dll file extension with .vst.

pluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and
writes to your audio device. Set the sample rate of the hosted plugin to the sample rate of
the input to the plugin.

 loadAudioPlugin

2-111

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the
medium peak gain upward in the loop to hear the effect.

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are
using a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your
audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio
stream loop ramps the frequency parameter down and then up.

2 Functions in Audio System Toolbox

2-112

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || ...
 (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

Input Arguments
pluginpath — Location of external plugin
character vector

Location of the external plugin, specified as a character vector. Use the full path to
specify the audio plugin you want to host in MATLAB. If the plugin is located in the
current folder, specify it by its name.
Example: loadAudioPlugin('coolPlugin.dll')
Example: loadAudioPlugin('C:\Program Files\VSTPlugins\coolPlugin.dll')
Plugin Path for Mac

For macOS, the plugin locations are predetermined depending on if the plugin was saved
system wide or for a particular user.

This table shows the system-wide paths.
Plugin Type Path
VST2 /Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST3 /Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU /Library/Audio/Plug-Ins/Components/coolPlugin.component

This table shows the user-specific paths.

 loadAudioPlugin

2-113

Plugin Type Path
VST2 ~/Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST3 ~/Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU ~/Library/Audio/Plug-Ins/Components/coolPlugin.component

Output Arguments
hostedPlugin — Object of external plugin
externalAudioPlugin | externalAudioSourcePlugin

Object of an external plugin, derived from the externalAudioPlugin or
externalAudioSourcePlugin class. You can interact with the hosted plugin as a DAW
would, with the additional functionality of the MATLAB environment.

Limitations
The loadAudioPlugin function supports 64-bit plugins only. You cannot load 32-bit
plugins using the loadAudioPlugin function.

See Also
Classes
audioPlugin | audioPluginSource | externalAudioPlugin |
externalAudioPluginSource

Topics
“Host External Audio Plugins”

Introduced in R2016b

2 Functions in Audio System Toolbox

2-114

midicallback
Call function handle when MIDI controls change value

Syntax
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)
oldFunctionHandle = midicallback(midicontrolsObject,[])
currentFunctionHandle = midicallback(midicontrolsObject)

Description
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)
sets functionHandle as the function handle called when midicontrolsObject
changes value, and returns the previous function handle, oldFunctionHandle.

oldFunctionHandle = midicallback(midicontrolsObject,[]) clears the
function handle.

currentFunctionHandle = midicallback(midicontrolsObject) returns the
current function handle.

Examples

Interactively Read MIDI Controls

Create a default MIDI controls object. Use midicallback to associate an anonymous
function with your MIDI controls object, mc.

mc = midicontrols;
midicallback(mc,@(x)disp(midiread(x)));

Move any control on your default MIDI device to display its current normalized value on
the command line.

 midicallback

2-115

 0.5079

 0.5000

 0.4921

 0.4841

 0.4762

 0.4683

 0.4603

 0.4683

Use midicallback to Update Plot

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Define a function that plots a sinusoid with the amplitude set by your MIDI control.
Make the axis constant.

axis([0,2*pi,-1,1]);
axis manual
hold on
sinePlotter = @(obj) plot(0:0.1:2*pi,midiread(obj).*sin(0:0.1:2*pi));

2 Functions in Audio System Toolbox

2-116

Use the midicallback function to associate your sinePlotter function with the
control specified by your midicontrolsObject. Move your specified MIDI control. The
plot updates automatically with the sinusoid amplitude specified by your MIDI control.

midicallback(midicontrolsObject,sinePlotter)

 midicallback

2-117

Change Function Handle Associated with MIDI Control

Create an object that responds to any control on the default MIDI device.

midicontrolsObject = midicontrols;

Define an anonymous function to display the current value of the MIDI control. Use
midicallback to associate your MIDI control object with the function you created.
Verify that your object is associated with your function.

displayControlValue = @(object) disp(midiread(object));
midicallback(midicontrolsObject,displayControlValue);
currentFunctionHandle = midicallback(midicontrolsObject)

2 Functions in Audio System Toolbox

2-118

currentFunctionHandle =

 @(object)disp(midiread(object))

Move any control on your default MIDI device to display its current normalized value on
the command line.

 0.3095

 0.4603

 0.6746

 0.7381

 0.8175

 0.8571

 0.9048

Define an anonymous function to print the current value of the MIDI control rounded to
two significant digits. Use midicallback to associate your MIDI controls object with the
function you created. Return the old function handle.
displayRoundedControlValue = @(object) fprintf('%.2f\n',midiread(object));
oldFunctionHandle = midicallback(midicontrolsObject,displayRoundedControlValue)

oldFunctionHandle =

 @(object)disp(midiread(object))

Move a control to display its current normalized value rounded to two significant digits.

0.91
0.83
0.67
0.49
0.29
0.18
0.05

Remove the association between the object and the function. Return the old function
handle.

oldFunctionHandle = midicallback(midicontrolsObject,[])

 midicallback

2-119

oldFunctionHandle =

 @(object)fprintf('%.2f\n',midiread(object))

Verify that no function is associated with your MIDI controls object.

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 []

Associate a Function with MIDI Controls

Define this function and save it to your current folder.

function plotSine(midicontrolsObject)

frequency = midiread(midicontrolsObject);

x = 0:0.01:10;

sinusoid = sin(2*pi*frequency.*x);

plot(x,sinusoid)
axis([0,10,-1.1,1.1]);
ylabel('Amplitude');
xlabel('Time (s)');
title('Sine Plot')
legend(sprintf('Frequency = %0.2f Hz',frequency));

end

Create a midicontrols object. Create a function handle for your plotSine function.
Use midicallback to associate your midicontrolsObject with plotSineHandle.

Move any controller on your MIDI device to plot a sinusoid. The sinusoid frequency
updates when you move MIDI controls.

midicontrolsObject = midicontrols;
plotSineHandle = @plotSine;
midicallback(midicontrolsObject,plotSineHandle);

2 Functions in Audio System Toolbox

2-120

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

functionHandle — New function handle
function handle

New function handle, specified as a function handle that contains one input argument.
The new function handle is called when midicontrolsObject changes value. For
information on what function handles are, see “Function Handles” (MATLAB).

 midicallback

2-121

Output Arguments
oldFunctionHandle — Old function handle
function handle

Old function handle set by the previous call to midicallback, returned as a function
handle.

currentFunctionHandle — Current function handle
function handle

The function handle set by the most recent call to midicallback, returned as a function
handle.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicontrols |
midiid | midiread | midisync | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2 Functions in Audio System Toolbox

2-122

midicontrols
Open group of MIDI controls for reading

Syntax
midicontrolsObject = midicontrols
midicontrolsObject = midicontrols(controlNumbers)
midicontrolsObject = midicontrols(controlNumbers,initialValues)
midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)
midicontrolsObject = midicontrols(___ ,'OutputMode',mode)

Description
midicontrolsObject = midicontrols returns an object that listens to all controls
on your default MIDI device.

Call midiread with the object to return the values of controls on your MIDI device. If
you call midiread before a control is moved, midiread returns the initial value of your
midicontrols object.

midicontrolsObject = midicontrols(controlNumbers) listens to controls
specified by controlNumbers on your default MIDI device.

midicontrolsObject = midicontrols(controlNumbers,initialValues)
specifies initialValues associated with controlNumbers.

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)
specifies the MIDI device your midicontrols object listens to, using any of the previous
syntaxes.

midicontrolsObject = midicontrols(___ ,'OutputMode',mode) specifies the
range of values returned by midiread and accepted as initialValues for
midicontrols and as controlValues for midisync.

 midicontrols

2-123

Examples

Listen to Any Control on Default Device

Create a midicontrols object and read the default control value.

midicontrolsObject = midicontrols
midiread(midicontrolsObject)

midicontrolsObject =

midicontrols object: any control on 'BCF2000'

ans =

 0

Move any control on your MIDI device. Use midiread to return the most recent value of
the last control moved.

midiread(midicontrolsObject)

ans =

 0.3810

Listen to Specific Control

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Move your selected MIDI control, and then use midiread to return its most recent value.

2 Functions in Audio System Toolbox

2-124

midicontrolsObject = midiread(midicontrolsObject);

ans =

 0.4048

Specify Control Numbers and Initial Value

Determine the control numbers of four different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
[controlNumber4,~] = midiid;

controlNumbers = [controlNumber1,controlNumber3;...
 controlNumber2,controlNumber4]

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumbers =

 1081 1085
 1082 1087

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumbers,initialValue);

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

 midicontrols

2-125

ans =

 0.0873 0.5000
 0.5000 0.5000

Specify Controls Numbers, Initial Value, and Output Mode

Determine the control numbers of two different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2];

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.
initialValue = 12;
midicontrolsObject = midicontrols(controlNumbers,initialValue,'OutputMode','rawmidi');

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

ans =

 63 12

Set the Default MIDI Device

Assume that your MIDI device is a Behringer BCF2000. Enter this syntax at the
MATLAB command line:

setpref midi DefaultDevice BCF2000

2 Functions in Audio System Toolbox

2-126

This preference persists across MATLAB sessions. You do not need to set it again unless
you want to change your default device.

Specify Control Numbers and MIDI Device Name

Assume that your MIDI device is a Behringer BCF2000 and has a control with
identification number 1001. Create a midicontrols object, which listens to control
number 1001 on your Behringer BCF2000 device.

midicontrolsObject = midicontrols(1001,'MIDIDevice','BCF2000');

Input Arguments
controlNumbers — MIDI device control numbers
integer | array of integers

MIDI device control numbers, specified as an integer or array of integers. Use midiid to
interactively identify the control numbers of your device. See “MIDI Device Control
Numbers” on page 2-129 for an advanced explanation of how controlNumbers are
determined.

If you specify controlNumbers as an empty vector, [], then the midicontrols object
responds to any control on your MIDI device.
Example: 1081
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

initialValues — Initial values of MIDI controls
0 (default) | scalar | array the same size as controlNumbers

Initial values of MIDI controls, specified as a scalar or an array the same size as
controlNumbers. If you specify initialValues as a scalar, all controls specified by
controlNumbers are assigned that value.

The value associated with your MIDI controls cannot be determined until you move a
MIDI control. If you specify an initial value associated with your MIDI control, the initial
value is returned by the midiread function until the MIDI control is moved.

 midicontrols

2-127

• If OutputMode is specified as 'normalized', then initial values must be in the
range [0,1]. Actual initial values are quantized and can be slightly different from
initial values specified when your midicontrols object is created.

• If OutputMode is specified as 'rawmidi', then initial values must be integers in the
range [0,127]

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

deviceName — MIDI device name
string

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a string. The specified deviceName can be a substring of the exact name of
your device. If you do not specify deviceName, the default MIDI device is used. See “Set
the Default MIDI Device” on page 2-126 for an example of specifying a default MIDI
device.

If you do not set a default MIDI device, the host operating system chooses the default
device in an unspecified way. As a best practice, use midiid to identify the name of the
device you want.
Example: 'MIDIDevice','BCF2000 MIDI 1'
Data Types: char

mode — Output mode for MIDI control value
'normalized' (default) | 'rawmidi'

Output mode for MIDI control value, specified as 'normalized' or 'rawmidi'.

• 'normalized' — Values of your MIDI control are normalized. If your
midicontrols object is called by midiread, then values in the range [0,1] are
returned.

2 Functions in Audio System Toolbox

2-128

• 'rawmidi' — Values of your MIDI control are not normalized. If your
midicontrols object is called by midiread, then integer values in the range [0,127]
are returned.

Example: 'OutputMode','normalized'
Example: 'OutputMode','rawmidi'
Data Types: char

Output Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device.

Definitions

MIDI Device Control Numbers

MATLAB defines MIDI device control numbers as (MIDI Channel Number) × 1000 +
(MIDI Controller Number).

• MIDI Channel Number is the transmission channel that your device uses to send
messages. This value is in the range 1–16.

• MIDI Controller Number is a number assigned to an individual control on your MIDI
device. This value is in the range 1–127.

Your MIDI device determines the values of MIDI Channel Number and MIDI Controller
Number.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiid | midiread | midisync | setpref

 midicontrols

2-129

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2 Functions in Audio System Toolbox

2-130

midiid
Interactively identify MIDI control

Syntax
[controlNumber,deviceName] = midiid

Description
[controlNumber,deviceName] = midiid returns the control number and device
name of the MIDI control you move. Call the function and then move the control you
want to identify. The function detects which control you move and returns the control
number and device name that specify that control.

Examples

Identify Control Number and Device Name

Call midiid and then move the control you want to identify on the MIDI device you want
to identify.

[ctl,dev] = midiid;
Move the control you wish to identify; type ^C to abort.
Waiting for control message...

ctl =
1002

 midiid

2-131

dev =
nanoKONTROL

Output Arguments
controlNumber — MIDI device control number
integer

MIDI device control number, specified as an integer. The device manufacturer assigns
the value to the control for identification purposes.

deviceName — MIDI device name
string

MIDI device name assigned by the device manufacturer or host operating system,
specified as a string.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiread | midisync | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2 Functions in Audio System Toolbox

2-132

midiread
Return most recent value of MIDI controls

Syntax
controlValues = midiread(midicontrolsObject)

Description
controlValues = midiread(midicontrolsObject) returns the most recent value
of the MIDI controls associated with the specified midicontrolsObject. To create this
object, use the midicontrols function.

Examples

Read Control Values of MIDI Device

midicontrolsObject = midicontrols;
controlValue = midiread(midicontrolsObject);

Read Multiple Control Values of MIDI Device

Identify two MIDI controls on your MIDI device.

[controlOne,~] = midiid
[controlTwo,~] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlOne =

 1081

 midiread

2-133

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlTwo =

 1082

Create a MIDI controls object that listens to both controls you identified.

controlNumbers = [controlOne,controlTwo];
midicontrolsObject = midicontrols(controlNumbers);

Move your specified MIDI controls and return their values. The values are returned as a
vector that corresponds to your control numbers vector, controlNumbers.

tic
while toc < 5
 controlValues = midiread(midicontrolsObject)
end

controlValues =

 0.0397 0.0556

Read Control Values in an Audio Stream Loop

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber, deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. The value associated with your MIDI controls object
cannot be determined until you move the MIDI control. Specify an initial value
associated with your MIDI control. The midiread function returns the initial value until
the MIDI control is moved.

initialControlValue = 1;
midicontrolsObject = midicontrols(controlNumber,initialControlValue);

2 Functions in Audio System Toolbox

2-134

Create a dsp.AudioFileReader System object with default settings. Create an
audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

In an audio stream loop, read an audio signal frame from the file, apply gain specified by
the control on your MIDI device, and then write the frame to your audio output device.
By default, the control value returned by midiread is normalized.

while ~isDone(fileReader)
 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;
 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);
end

Close the input file and release your output device.

release(fileReader);
release(deviceWriter);

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

Output Arguments
controlValues — Most recent values of MIDI controls
[0,1] (default) | integer values in the range [0,127]

 midiread

2-135

Most recent values of MIDI controls, returned as normalized values in the range [0,1],
or as integer values in the range [0,127]. The output values depend on the
OutputMode specified when your midicontrols object is created.

• If OutputMode was specified as 'normalized', then midiread returns values in the
range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode was specified as 'rawmidi', then midiread returns integer values in
the range [0,127], and no quantization is required.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midisync | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2 Functions in Audio System Toolbox

2-136

midisync
Send values to MIDI controls for synchronization

Syntax
midisync(midicontrolsObject)
midisync(midicontrolsObject,controlValues)

Description
midisync(midicontrolsObject) sends the initial values of controls to your MIDI
device, as specified by your MIDI controls object. To create this object, use the
midicontrols function. If your MIDI device can receive and respond to messages, it
adjusts its controls as specified.

Note Many MIDI devices are not bidirectional. Calling midisync with a unidirectional
device has no effect. midisync cannot tell whether a value is successfully sent to a
device or even whether the device is bidirectional. If sending a value fails, no errors or
warnings are generated.

midisync(midicontrolsObject,controlValues) sends controlValues to the
MIDI controls associated with the specified midicontrolsObject.

Examples

Synchronize MIDI Control to Initial Value

Use midiid to identify a control on your default MIDI device.

[controlNumber,~] = midiid;

 midisync

2-137

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify an initial value for your control. Call midisync to
set the specified control on your device to the initial value.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialValue);
midisync(midicontrolsObject);

Synchronize MIDI Control to Specified Value

Use midiid to identify three controls on your default MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
controlNumbers = [controlNumber1,controlNumber2,controlNumber3];

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify initial values for your controls. Call midisync to
set the specified control on your device to the initial value.

controlValues = [0,0,1];
midicontrolsObject = midicontrols(controlNumbers,controlValues);
midisync(midicontrolsObject);

Create a loop that updates your control values and synchronizes those values to the
physical controls on your device.

for i = 1:100
 controlValues = controlValues + [0.006,0.008,-0.008];
 midisync(midicontrolsObject,controlValues);
 pause(0.1)
end

2 Functions in Audio System Toolbox

2-138

Create UI Slider and Synchronize with MIDI Control

Define this function and save it to your current folder.

function trivialmidigui(controlNumber,deviceName)

 slider = uicontrol('Style','slider');
 mc = midicontrols(controlNumber,'MIDIDevice',deviceName);
 midisync(mc);
 set(slider,'Callback',@slidercb);
 midicallback(mc, @mccb);

 function slidercb(slider,~)
 val = get(slider,'Value');
 midisync(mc, val);
 disp(val);
 end

 function mccb(mc)
 val = midiread(mc);
 set(slider,'Value',val);
 disp(val);
 end

end

Use midiid to identify a control number and device name. Call the function you created,
specifying the control number and device name as inputs.

[controlNumber,deviceName] = midiid;
trivialmidigui(controlNumber,deviceName)

The slider on the user interface is synchronized with the specified control on your device.
Move one to see the other respond.

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

 midisync

2-139

controlValues — Values sent to MIDI device
initial values specified by midicontrolsObject (default) | scalar | array

Values sent to MIDI device, specified as a scalar or an array the same size as
controlNumbers of the associated midicontrols object. If you do not specify
controlValues, the default value is the initialValues of the associated
midicontrols object.

The possible range for controlValues depends on the OutputMode of the associated
midicontrols object.

• If OutputMode is specified as 'normalized', then controlValues must consist of
values in the range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode is specified as 'rawmidi', then controlValues must consist of
integer values in the range [0,127].

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midiread | setpref

Topics
“Musical Instrument Digital Interface (MIDI)”
“MIDI Control for Audio Plugins”

2 Functions in Audio System Toolbox

2-140

validateAudioPlugin
Test MATLAB source code for audio plugin

Syntax
validateAudioPlugin classname
validateAudioPlugin options classname

Description
validateAudioPlugin classname generates and runs a “Test Bench Procedure” on
page 2-143 that exercises your audio plugin class.

validateAudioPlugin options classname specifies options to modify the default
“Test Bench Procedure” on page 2-143.

Examples

Validate Audio Plugin

validateAudioPlugin audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.
Running mex testbench... passed.
Deleting testbench.
Ready to generate audio plug-in.

Skip MEX Version of Test Bench

validateAudioPlugin -nomex audiopluginexample.Echo

 validateAudioPlugin

2-141

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Deleting testbench.

Keep Test Benches After Validation

validateAudioPlugin -keeptestbench audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.
Running mex testbench... passed.
Keeping testbench.
Ready to generate audio plug-in.

Two test benches are saved to your current folder:

• testbench_Echo.m
• testbench_Echo_mex.mexw64

Skip MEX Version and Keep Test Bench

validateAudioPlugin -keeptestbench -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Keeping testbench.

One test bench is saved to your current folder:

2 Functions in Audio System Toolbox

2-142

• testbench_Echo.m

Input Arguments
options — Options to modify test bench procedure
-nomex | -keeptestbench

Options to modify test bench procedure, specified as -nomex or -keeptestbench.
Options can be specified together or separately, and in any order.

• -nomex –– validateAudioPlugin does not generate and run a MEX version of the
test bench file. This option significantly reduces run time of the test bench procedure.

• -keeptestbench –– validateAudioPlugin saves the generated test benches to the
current folder.

classname — Name of the plugin class to validate
plugin class

Name of the plugin class to validate. The plugin class must derive from either the
audioPlugin class or the audioPluginSource class. The validateAudioPlugin
function exercises an instance of the specified plugin class.

Limitations
The valdiateAudioPlugin function is compatible with Windows and Mac operating
systems. It is not compatible with Linux.

Definitions

Test Bench Procedure

The valudateAudioPlugin function uses dynamic testing to find common audio plugin
programming mistakes not found by the static checks performed by
generateAudioPlugin. The function:

 validateAudioPlugin

2-143

1 Runs a subset of error checks performed by generateAudioPlugin.
2 Generates and runs a MATLAB test bench to exercise the class.
3 Generates and runs a MEX version of the test bench.
4 Removes the generated test benches.

If the plugin class fails testing, step 4 is automatically omitted. To debug your plugin,
step through the saved generated test bench.

If you use the -keeptestbench option, or if an error occurs during validation, the test
bench files are saved to your current folder.

See Also
Functions
generateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Design an Audio Plugin”

Introduced in R2016a

2 Functions in Audio System Toolbox

2-144

System objects in Audio System Toolbox

3

visualize
Visualize static characteristic of dynamic range controller

Syntax
visualize(dynamicRangeController)
visualize(dynamicRangeController,inputRange)
outputLevel = visualize(___)

Description
visualize(dynamicRangeController) plots the static characteristic of the dynamic
range control object. The plot is updated automatically when properties of the object
change.

visualize(dynamicRangeController,inputRange) enables you to specify the input
range.

outputLevel = visualize(___) returns the dB output level corresponding to the
input range. You can use any of the input arguments from previous syntaxes.

Note This syntax is only available for the compressor, limiter, and expander System
objects. It is not available for the noiseGate System object.

Examples

Plot Static Characteristic

Create an object of the compressor System object™, and then plot the static
characteristic.

dynamicRangeCompressor = compressor;
visualize(dynamicRangeCompressor)

3 System objects in Audio System Toolbox

3-2

The static characteristic plot updates automatically if you modify a property of the object.

dynamicRangeCompressor.Threshold = -30;

 visualize

3-3

Specify Range of Static Characteristic Plot

Create an object of the expander System object™. Plot the static characterstic over the
range -15 to -5, in 0.001 dB increments.

dynamicRangeExpander = expander;
visualize(dynamicRangeExpander,-15:0.001:-5)

3 System objects in Audio System Toolbox

3-4

Get Output Level From Static Characteristic

Create an object of the limiter System object™. Get the output level of the static
characteristic over a specified range.

dynamicRangeLimiter = limiter;
inputLevel = -15:1:-5
outputLevel = visualize(dynamicRangeLimiter,inputLevel)

inputLevel =

 visualize

3-5

 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

outputLevel =

 -15 -14 -13 -12 -11 -10 -10 -10 -10 -10 -10

Input Arguments
dynamicRangeController — Dynamic range control object
object

3 System objects in Audio System Toolbox

3-6

Dynamic range control object, specified as an object of compressor , expander ,
limiter or noiseGate.

inputRange — Range to calculate static characteristic output
vector of monotonically increasing values

Range over which to calculate the output of the static characteristic.

The default input range depends on the dynamic range control object:

• compressor –– [-50:0.01:0] dB
• limiter –– [-50:0.01:0] dB
• expander –– [-50:0.01:0] dB
• noiseGate –– [0:0.001:1] linear

Output Arguments
outputLevel — Output level (dB)
vector

Output level in dB, returned as a vector the same size as inputRange.

This output is only available for the compressor, limiter, and expander System
objects. It is not available for the noiseGate System object.

See Also
System Objects
compressor | expander | limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

 visualize

3-7

createAudioPluginClass
Create audio plugin class that implements functionality of System object

Syntax
createAudioPluginClass(obj)
createAudioPluginClass(obj,pluginName)

Description
createAudioPluginClass(obj) creates a System object plugin that implements the
functionality of the Audio System Toolbox System object, obj. The name of the created
class is the System object variable name, obj, followed by 'Plugin', for example,
objPlugin.

If the object is locked, the number of input and output channels of the plugin is equal to
the number of channels of the object. Otherwise, the number of channels is equal to 2.

createAudioPluginClass(obj,pluginName) specifies the name of your created
System object plugin class.
Example: createAudioPluginClass(obj,'coolEffect') creates a System object
plugin with class name 'coolEffect'.

Examples

Create an Audio Plugin Class From a System Object

Create a compressor object. Call createAudioPluginClass to create a System
object™ plugin class that implements the functionality of the compressor object.

3 System objects in Audio System Toolbox

3-8

cmpr = compressor;
createAudioPluginClass(cmpr)

Specify Name of Created Plugin Class

Create an object of the reverberator System object™. Call
createAudioPluginClass to create a System object™ plugin class that implements
the functionality of the reverberator object, specifying the plugin class name as the
second argument.

reverb = reverberator;
createAudioPluginClass(reverb,'Garage')

Input Arguments
obj — System object to create plugin class from
Audio System Toolbox System object

System object from which to create a plugin class.

pluginName — Name of created plugin class
character vector

Name of created plugin class, specified as a character vector with fewer than 64
elements.
Data Types: char

See Also
System Objects
audioOscillator | compressor | crossoverFilter | expander | graphicEQ |
limiter | multibandParametricEQ | noiseGate | octaveFilter | reverberator
| wavetableSynthesizer | weightingFilter

Topics
“Design an Audio Plugin”

 createAudioPluginClass

3-9

“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

3 System objects in Audio System Toolbox

3-10

getFilter
Return biquad filter object with design parameters set

Syntax
biquad = getFilter(obj)

Description
biquad = getFilter(obj)returns a dsp.BiquadFilter object, biquad. The
SOSMatrix and ScaleValues properties of the biquad filter object are set as specified
by the obj System object.

Use getFilter for the design capabilities of the obj System object and the processing
capabilities of the dsp.BiquadFilter System object.

Examples

Get Biquad Filter for Octave Filter Design

Create an octaveFilter System object™. Call getFilter on your object to return a
dsp.BiquadFilter object with design parameters specified by your octaveFilter
System object.

octFilt = octaveFilter;
biquad = getFilter(octFilt)

biquad =

 dsp.BiquadFilter with properties:

 Structure: 'Direct form II transposed'
 SOSMatrixSource: 'Property'

 getFilter

3-11

 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Use get to show all properties

Get Biquad Filter for Weighting Filter Design

Create a weightingFilter System object™ and visualize the frequency response.

weightFilt = weightingFilter;
visualize(weightFilt)

3 System objects in Audio System Toolbox

3-12

Call getFilter on your object to return a dsp.BiquadFilter object with design
parameters specified by your weightingFilter System object. Use fvtool to visualize
the biquad filter.
biquad = getFilter(weightFilt)
fvtool(biquad,'FrequencyScale','log')

biquad =

 dsp.BiquadFilter with properties:

 Structure: 'Direct form II transposed'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]

 getFilter

3-13

 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Use get to show all properties

Input Arguments
obj — System object to get filter from
System object

System object that you want to get a biquad filter object from.

3 System objects in Audio System Toolbox

3-14

Output Arguments
biquad — Object of dsp.BiquadFilter
object

Object of the dsp.BiquadFilter System object.

See Also
System Objects
dsp.BiquadFilter | octaveFilter | weightingFilter

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement Using Weighting Filters”

Introduced in R2016b

 getFilter

3-15

info
Get audio device information

Syntax
infoStruct = info(obj)

Description
infoStruct = info(obj) returns a structure, infoStruct, containing information
about the System object, obj.

Examples

Get Input Audio Device Information

Create an object of the audioDeviceReader System object™ and then call info to
return a structure containing information about the selected driver, device name, and the
maximum number of input channels.

deviceReader = audioDeviceReader;
info(deviceReader)

ans =

 struct with fields:

 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Capture Driver'
 MaximumInputChannels: 2

3 System objects in Audio System Toolbox

3-16

Get Output Audio Device Information

Create an object of the audioDeviceWriter System object™ and then call info to
return a structure containing information about the selected driver, device name, and the
maximum number of output channels.

deviceWriter = audioDeviceWriter;
info(deviceWriter)

ans =

 struct with fields:

 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

Get Audio I/O Device Information

Create an object of the audioPlayerRecorder System object™ and then call info to
return a structure containing information about the selected driver, device name, and the
maximum number of input and output channels.

playRec = audioPlayerRecorder;
info(playRec)

ans =

 struct with fields:

 Driver: 'ASIO'
 DeviceName: 'No full-duplex audio device detected'
 MaximumRecorderChannels: 0

 info

3-17

 MaximumPlayerChannels: 0

Input Arguments
obj — System object to get information from
System object

System object to get information from.

Output Arguments
infoStruct — Struct containing object information
struct

Struct containing information about the System object, obj. Fields of the struct depend on
the System object.

See Also
System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Introduced in R2016a

3 System objects in Audio System Toolbox

3-18

cost
Estimate implementation cost of audio System objects

Syntax
implementationCost = cost(audioObj)

Description
implementationCost = cost(audioObj) returns a structure,
implementationCost, whose fields contain information about the computation cost of
implementing the audio System object, audioObj.

Examples

Estimate Implementation Cost of Crossover Filter

Create a crossover filter with 2 crossovers with 48 dB/octave slopes. Call cost to get an
estimate of the implementation cost.

crossFilt = crossoverFilter('NumCrossovers',2,'CrossoverSlopes',48);
cost1 = cost(crossFilt)

cost1 =

 struct with fields:

 NumCoefficients: 120
 NumStates: 48
 MultiplicationsPerInputSample: 120
 AdditionsPerInputSample: 97

 cost

3-19

Reduce the crossover slopes for both crossovers to 12 dB/octave. Call cost to get an
estimate of the new implementation cost.

crossFilt.CrossoverSlopes = 12;
cost2 = cost(crossFilt)

cost2 =

 struct with fields:

 NumCoefficients: 36
 NumStates: 12
 MultiplicationsPerInputSample: 36
 AdditionsPerInputSample: 25

Input Arguments
audioObj — Audio System object
crossoverFilter object

Specify the input as a supported audio System object.
Data Types: object

Output Arguments
implementationCost — Estimate of implementation cost
struct

Estimate of the implementation cost of a filter, returned as struct:
Structure Field Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1 or -1)
NumStates Number of states
MultiplicationsPerInputSample Number of multiplication per input sample
AdditionsPerInputSample Number of additions per input sample

3 System objects in Audio System Toolbox

3-20

See Also
crossoverFilter,

Introduced in R2016a

 cost

3-21

audioPlayerRecorder System object

Simultaneously play and record using an audio device

Description
The audioPlayerRecorder System object reads and writes audio samples using your
computer’s audio device. To use audioPlayerRecorder, you must have an audio device
and driver capable of simultaneous playback and record.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the
data flow.

To simultaneously play and record:

1 Create the audioPlayerRecorder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

3 System objects in Audio System Toolbox

3-22

Creation

Syntax
playRec = audioPlayerRecorder
playRec = audioPlayerRecorder(sampleRateValue)
playRec = audioPlayerRecorder(___ ,Name,Value)

Description

playRec = audioPlayerRecorder returns a System object, playRec, that plays
audio samples to an audio device and records samples from the same audio device, in real
time.

playRec = audioPlayerRecorder(sampleRateValue) sets the SampleRate
property to sampleRateValue.

playRec = audioPlayerRecorder(___ ,Name,Value) sets each property Name to
the specified Value. Unspecified properties have default values.
Example: playRec = audioPlayerRecorder(48000,'BitDepth','8-bit
integer') creates a System object, playRec, that operates at a 48 kHz sample rate and
an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Device — Device used to play and record audio data
default audio device (default) | character vector

 audioPlayerRecorder System object

3-23

Device used to play and record audio data, specified as a character vector. The object
supports only devices enabled for simultaneous playback and recording (full-duplex
mode). Use getAudioDevices to list available devices.

Supported drivers for audioPlayerRecorder are platform-specific:

• Windows –– ASIO
• Mac –– CoreAudio
• Linux –– ALSA

Note The default audio device is the default device of your machine only if it supports
full-duplex mode. If your machine’s default audio device does not support full-duplex
mode, audioPlayerRecorder specifies as the default device the first available device it
detects that is capable of full-duplex mode. Use the info method to get the device name
associated with your audioPlayerRecorder object.

Data Types: char

SampleRate — Sample rate used by device to record and play audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to record and play audio data, in Hz, specified as a positive
integer. The range of SampleRate depends on your audio hardware.
Data Types: single | double

BitDepth — Data type used by device
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit
float'

Data type used by device, specified as a character vector.
Data Types: char

SupportVariableSize — Support variable frame size
false (default) | true

Option to support variable frame size, specified as false or true.

3 System objects in Audio System Toolbox

3-24

• false –– If the audioPlayerRecorder object is locked, the input must have the
same frame size at each call. The buffer size of your audio device is the same as the
input frame size. If you are using the object on Windows, open the ASIO UI to set the
sound card buffer to the frame size value.

• true –– If the audioPlayerRecorder object is locked, the input frame size can
change at each call. The buffer size of your audio device is specified through the
BufferSize property.

To minimize latency, set SupportVariableSize to false. If variable-size input is
required by your audio system, set SupportVariableSize to true.
Data Types: logical

BufferSize — Buffer size of audio device
1024 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If you are using the object on a Windows machine, use asiosettings to set the
sound card buffer size to the BufferSize value of your audioPlayerRecorder System
object.

Dependencies

To enable this property, set SupportVariableSize to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

PlayerChannelMapping — Mapping between columns of played data and channels of
device
[] (default) | scalar | vector

Mapping between columns of played data and channels of output device, specified as a
scalar or as a vector of valid channel indices. The default value of this property is [],
which means that the default channel mapping is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 audioPlayerRecorder System object

3-25

RecorderChannelMapping — Mapping between channels of device and columns of
recorded data
1 (default) | scalar | vector

Mapping between channels of your audio device and columns of recorded data, specified
as a scalar or as a vector of valid channel indices. The default value is 1, which means
that the first recording channel on the device is used to acquire data and is mapped to a
single-column matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Usage

Syntax
audioFromDevice = playRec(audioToDevice)
[audioFromDevice,numUnderrun] = playRec(audioToDevice)
[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice)

Description

audioFromDevice = playRec(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device, and returns one frame of audio,
audioFromDevice.

[audioFromDevice,numUnderrun] = playRec(audioToDevice) returns the
number of samples overrun since the last call to playRec.

[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice)
returns the number of samples underrun since the last call to playRec.

Note: When you call the audioPlayerRecorder System object, the audio device
specified by the Device property is locked. An audio device can be locked by only one
audioPlayerRecorder at a time. To release the audio device, call release on the
audioPlayerRecorder System object.

3 System objects in Audio System Toolbox

3-26

Input Arguments

audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double | int8 | int16 | int32 | uint8

Output Arguments

audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix the same size and data type as
audioToDevice.
Data Types: single | double | int16 | int32 | uint8

numUnderrun — Number of samples underrun
scalar

Number of samples by which the player queue was underrun since the last call to
playRec.
Data Types: uint32

numOverrun — Number of samples overrun
scalar

Number of samples by which the recorder queue was overrun since the last call to
playRec.
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

 audioPlayerRecorder System object

3-27

release(obj)

Specific to audioPlayerRecorder
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Synchronize Playback and Recording

Synchronize playback and recording using a single audio device. If synchronization is
lost, print information about samples dropped.

Create objects to read from and write to an audio file. Create an audioPlayerRecorder
object to play an audio signal to your device and simultaneously record audio from your
device.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',256);
fs = fileReader.SampleRate;

fileWriter = dsp.AudioFileWriter('Counting-PlaybackRecorded.wav', ...
 'SampleRate',fs);

aPR = audioPlayerRecorder('SampleRate',fs);

In a frame-based loop:

1 Read an audio signal from your file.

3 System objects in Audio System Toolbox

3-28

2 Play the audio signal to your device and simultaneously record audio from your
device. Use the optional nUnderruns and nOverruns output arguments to track
any loss of synchronization.

3 Write your recorded audio to a file.

Once the loop is completed, release the objects to free devices and resoures.

while ~isDone(fileReader)
 audioToPlay = fileReader();

 [audioRecorded,nUnderruns,nOverruns] = aPR(audioToPlay);

 fileWriter(audioRecorded)

 if nUnderruns > 0
 fprintf('Audio player queue was underrun by %d samples.\n',nUnderruns);
 end
 if nOverruns > 0
 fprintf('Audio recorder queue was overrun by %d samples.\n',nOverruns);
 end
end

release(fileReader);
release(fileWriter);
release(aPR);

Audio player queue was underrun by 6400 samples.
Audio recorder queue was overrun by 3840 samples.

Specify Nondefault Channel Mapping

The audioPlayerRecorder System object™ enables you to specify a nondefault
mapping between the channels of your audio device and the data sent to and received
from your audio device. To run this example, your audio device must have at least two
channels and be capable of full-duplex mode.

Using Default Settings

Create an audioPlayerRecorder object with default settings. The
audioPlayerRecorder is automatically configured to a compatible device and driver.

aPR = audioPlayerRecorder;

 audioPlayerRecorder System object

3-29

The audioPlayerRecorder combines reading from your device and writing to your
device in a single call: audioFromDevice = aPR(audioToDevice). Calling the
audioPlayerRecorder with default settings:

• Maps columns of audioToDevice to output channels of your device
• Maps input channels of your device to columns of audioFromDevice

By default, audioFromDevice is a one-column matrix corresponding to channel 1 of
your audio device. To view the maximum number of input and output channels of your
device, use the info method.

aPRInfo = info(aPR);

aPRInfo is returned as a structure with fields containing information about your
selected driver, audio device, and the maximum number of input and output channels in
your configuration.

Call the audioPlayerRecorder with a two-column matrix. By default, column 1 is
mapped to output channel 1, and column 2 is mapped to output channel 2. The
audioPlayerRecorder returns a one-column matrix with the same number of rows as
the audioToDevice matrix.

highToneGenerator = audioOscillator('Frequency',600,'SamplesPerFrame',256);
lowToneGenerator = audioOscillator('Frequency',200,'SamplesPerFrame',256);

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

3 System objects in Audio System Toolbox

3-30

Nondefault Channel Mapping for Audio Output

Specify a nondefault channel mapping for your audio output. Specify that column 1 of
audioToDevice maps to channel 2, and that column 2 of audioToDevice maps to
channel 1. To modify the channel mapping, the audioPlayerRecorder object must be
unlocked.

Run the audioPlayerRecorder object. If you are using headphones or stereo speakers,
notice that the high frequency and low frequency tones have switched speakers.

release(aPR)
aPR.PlayerChannelMapping = [2,1];

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

Nondefault Channel Mapping for Audio Input

Specify a nondefault channel mapping for your audio input. Record data from only
channel two of your device. In this case, channel 2 is mapped to a one-column matrix.
Use size to verify that audioFromDevice is a 256-by-1 matrix.

release(aPR)
aPR.RecorderChannelMapping = 2;

audioFromDevice = aPR(audioToDevice);

[rows,col] = size(audioFromDevice)

 audioPlayerRecorder System object

3-31

rows =

 256

col =

 1

As a best practice, release your audio device once complete.

release(aPR)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library

files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another

3 System objects in Audio System Toolbox

3-32

development environment where MATLAB is not installed. For more details, see “Run
Audio I/O Features Outside MATLAB and Simulink”.

See Also
Functions
asiosettings | getAudioDevices

Blocks
Audio Device Reader | Audio Device Writer

System Objects
audioDeviceReader | audioDeviceWriter | dsp.AudioFileReader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2017a

 audioPlayerRecorder System object

3-33

audioDeviceReader System object

Record from sound card

Description
The audioDeviceReader System object reads audio samples using your computer’s
audio input device.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the
audio device reader data flow.

The audio device reader specifies the driver, the device and its attributes, and the data
type and size output from your System object.

To stream data from an audio device:

1 Create the audioDeviceReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

3 System objects in Audio System Toolbox

3-34

Creation

Syntax
deviceReader = audioDeviceReader
deviceReader = audioDeviceReader(sampleRateValue)
deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue)
deviceReader = audioDeviceReader(___ ,Name,Value)

Description

deviceReader = audioDeviceReader returns a System object, deviceReader, that
reads audio samples using an audio input device in real time.

deviceReader = audioDeviceReader(sampleRateValue) sets the SampleRate
property to sampleRateValue.

deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue)
sets the SamplesPerFrame property to sampPerFrameValue.

deviceReader = audioDeviceReader(___ ,Name,Value) sets each property Name
to the specified Value. Unspecified properties have default values.
Example: deviceReader = audioDeviceReader(16000,'BitDepth','8-bit
integer') creates a System object, deviceReader, that operates at a 16 kHz sample
rate and an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

 audioDeviceReader System object

3-35

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or
'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO'
driver option, install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card
buffer size to the SamplesPerFrame value of your audioDeviceReader System
object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, set SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.
Data Types: char

Device — Device used to acquire audio samples
default audio device (default) | character vector

Device used to acquire audio samples, specified as a character vector. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char

NumChannels — Number of input channels acquired by audio device
1 (default) | integer

Number of input channels acquired by audio device, specified as an integer. The range of
NumChannels depends on your audio hardware.
Dependencies

To enable this property, set ChannelMappingSource to 'Auto'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

3 System objects in Audio System Toolbox

3-36

SamplesPerFrame — Frame size read from audio device
1024 (default) | integer

Frame size read from audio device, specified as a positive integer. SamplesPerFrame is
also the size of your device buffer and the number of columns of the output matrix
returned by your audioDeviceReader object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Sample rate used by device to acquire audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to acquire audio data, in Hz, specified as a positive integer.
The range of SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

BitDepth — Data type used by device to acquire audio data
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit
float'

Data type used by device to acquire audio data, specified as a character vector.
Data Types: char

ChannelMappingSource — Source of mapping between device channels and output
matrix
'Auto' (default) | 'Property'

Source of mapping between the channels of your audio input device and columns of the
output matrix, specified as 'Auto' or 'Property'.

• 'Auto' –– The default settings determine the mapping between device channels and
output matrix. For example, suppose that your audio device has six channels
available, and you set NumChannels to 6. The output from a call to your audio device
reader is a six-column matrix. Column 1 corresponds to channel 1, column 2
corresponds to channel 2, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between
channels of your audio device and columns of the output matrix.

 audioDeviceReader System object

3-37

Data Types: char

ChannelMapping — Nondefault mapping between device channels and output matrix
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault mapping between channels of your audio input device and columns of the
output matrix, specified as a vector of valid channel indices. See “Specify Channel
Mapping for audioDeviceReader” on page 3-45 for more information.
Dependencies

To enable this property, set ChannelMappingSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

OutputDataType — Data type of the output
'double' (default) | 'single' | 'int32' | 'int16' | 'uint8'

Data type of the output, specified as a character vector.

Note If OutputDataType is specified as 'double' or 'single', the audio device reader
outputs data in the range [–1, 1]. For other data types, the range is [min, max] of the
specified data type.

Data Types: char

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

3 System objects in Audio System Toolbox

3-38

Syntax
audioFromDevice = deviceReader()
[audioFromDevice,numOverrun] = deviceReader()

Description

audioFromDevice = deviceReader() returns one frame of audio samples from the
selected audio input device.

[audioFromDevice,numOverrun] = deviceReader() returns the number of
samples by which the audio reader's queue was overrun since the last call to
deviceReader.

Note: When you call the audioDeviceReader System object, the audio device
specified by the Device property is locked. An audio device can be locked by only one
audioDeviceReader at a time. To release the audio device, call release on your
audioDeviceReader object.

Output Arguments

audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix. The size of the matrix is determined
by the specified number of channels and the SamplesPerFrame property. The data type
of the matrix depends on the OutputDataType property.
Data Types: single | double | int16 | int32 | uint8

numOverrun — Number of samples overrun
scalar

Number of samples by which the audio reader's queue was overrun since the last call to
deviceReader.
Data Types: uint32

 audioDeviceReader System object

3-39

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceReader
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Read from Microphone and Write to Audio File

Record 10 seconds of speech with a microphone and send the output to a .wav file.

Create an audioDeviceReader System object™ with default settings. Call setup to
reduce the computational load of initialization in an audio stream loop.

deviceReader = audioDeviceReader;
setup(deviceReader);

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter(...
 'mySpeech.wav',...
 'FileFormat','WAV');

3 System objects in Audio System Toolbox

3-40

Record 10 seconds of speech. In an audio stream loop, read an audio signal frame from
the device, and write the audio signal frame to a specified file. The file saves to your
current folder.

disp('Speak into microphone now.')
tic;
while toc < 10
 acquiredAudio = deviceReader();
 fileWriter(acquiredAudio);
end
disp('Recording complete.')

Speak into microphone now.
Recording complete.

Release the audio device and close the output file.

release(deviceReader);
release(fileWriter);

Reduce Latency Due to Input Device Buffer

Latency due to the input device buffer is the time delay of acquiring one frame of data. In
this example, you modify default properties of your audioDeviceReader System
object™ to reduce latency.

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader

deviceReader =

 audioDeviceReader with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 NumChannels: 1
 SamplesPerFrame: 1024
 SampleRate: 44100

 Use get to show all properties

 audioDeviceReader System object

3-41

Calculate the latency due to your device buffer.

fprintf('Latency due to device buffer: %f seconds.\n',...
 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.023220 seconds.

Set the SamplesPerFrame property of your audioDeviceReader System object to 64.
Calculate the latency.

deviceReader.SamplesPerFrame = 64;
fprintf('Latency due to device buffer: %f seconds.\n',...
 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.001451 seconds.

Set the SampleRate property of your audioDeviceReader System object to 96,000.
Calculate the latency.

deviceReader.SampleRate = 96000;
fprintf('Latency due to device buffer: %f seconds.\n',...
 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.000667 seconds.

Determine and Decrease Overrun

Overrun refers to input signal drops, which occur when the audio stream loop does not
keep pace with the device. Determine overrun of an audio stream loop, add an artificial
computational load to the audio stream loop, and then modify properties of your
audioDeviceReader System object™ to decrease overrun. Your results depend on your
computer.

Create an audioDeviceReader System object with SamplesPerFrame set to 256 and
SampleRate set to 44,100. Call setup to reduce the computational load of initialization
in an audio stream loop.

deviceReader = audioDeviceReader(...
 'SamplesPerFrame',256,...
 'SampleRate',44100);
setup(deviceReader);

3 System objects in Audio System Toolbox

3-42

Create a dsp.AudioFileWriter System object. Specify the file name and data type to
write.
fileWriter = dsp.AudioFileWriter(...
 'mySpeech.wav',...
 'FileFormat','WAV');

Record 5 seconds of speech. In an audio stream loop, read an audio signal frame from
your device, and write the audio signal frame to a specified file.
totalOverrun = 0;
disp('Speak into microphone now.')
tic;
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
end
fprintf('Recording complete.\n')
fprintf('Total number of samples overrun: %d.\n',...
 totalOverrun);
fprintf('Total seconds overrun: %d.\n',...
 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.
Recording complete.
Total number of samples overrun: 1280.
Total seconds overrun: 2.902494e-02.

Release your audioDeviceReader and dsp.AudioDeviceWriter System objects and
zero your counter variable.
release(fileWriter);
release(deviceReader);
totalOverrun = 0;

Use pause to add an artificial computational load to your audio stream loop. The
computational load causes the audio stream loop to go slower than the device, which
causes acquired samples to be dropped.
disp('Speak into microphone now.')
tic;
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;

 audioDeviceReader System object

3-43

 fileWriter(input);
 pause(0.01)
end
fprintf('Recording complete.\n')
fprintf('Total number of samples overrun: %d.\n',...
 totalOverrun);
fprintf('Total seconds overrun: %d.\n',...
 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.
Recording complete.
Total number of samples overrun: 96256.
Total seconds overrun: 2.182676e+00.

Release your audioDeviceReader and dsp.AudioFileWriter System objects, and set
the SamplePerFrame property to 512. The device buffer size increases so that the device
now takes longer to acquire a frame of data. Set your counter variable to zero.

release(fileWriter);
release(deviceReader);
deviceReader.SamplesPerFrame = 512;
totalOverrun = 0;

Calculate the total overrun of the audio stream loop using your modified
SamplesPerFrame property.

disp('Speak into microphone now.')
tic;
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
 pause(0.01)
end
fprintf('Recording complete.\n')
fprintf('Total number of samples overrun: %d.\n',...
 totalOverrun);
fprintf('Total seconds overrun: %f.\n',...
 totalOverrun/deviceReader.SampleRate);

Speak into microphone now.
Recording complete.

3 System objects in Audio System Toolbox

3-44

Total number of samples overrun: 2048.
Total seconds overrun: 0.000000.

Specify Channel Mapping for audioDeviceReader

Specify non-default channel mapping for an audioDeviceReader System object™. This
example is hardware specific. It assumes that your computer has a default audio input
device with two available channels.

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader;

The default number of channels is 1. Call your audioDeviceReader System object like
a function with no arguments to read one frame of data from your audio device. Verify
that the output data matrix has one column.

x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

 1

Use info to determine the maximum number of input channels available with your
specified Driver and Device configuration.

info(deviceReader)

ans =

 struct with fields:

 Driver: 'DirectSound'

 audioDeviceReader System object

3-45

 DeviceName: 'Primary Sound Capture Driver'
 MaximumInputChannels: 2

Set ChannelMappingSource to 'Property'. The audioDeviceReader System object
must be unlocked to change this property.
release(deviceReader);
deviceReader.ChannelMappingSource = 'Property'

deviceReader =

 audioDeviceReader with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SamplesPerFrame: 1024
 SampleRate: 44100

 Use get to show all properties

By default, if ChannelMappingSource is set to 'Property', all available channels are
mapped to the output. Call your audioDeviceReader System object to read one frame
of data from your audio device. Verify that the output data matrix has two columns.
x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

 2

Use the ChannelMapping property to specify an alternative mapping between channels
of your device and columns of the output matrix. Indicate the input channel number at
an index corresponding to the output column. To change this property, first unlock the
audioDeviceReader System object.

3 System objects in Audio System Toolbox

3-46

release(deviceReader);
deviceReader.ChannelMapping = [2,1];

Now when you call your audioDeviceReader:

• Input channel 1 of your device maps to the second column of your output matrix.
• Input channel 2 of your device maps to the first column of your output matrix.

Acquire a specific channel from your input device.

deviceReader.ChannelMapping = 2;

If you call your audioDeviceReader, input channel 2 of your device maps to an output
vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library

files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see “Run
Audio I/O Features Outside MATLAB and Simulink”.

See Also
Functions
asiosettings | getAudioDevices

Blocks
Audio Device Reader

 audioDeviceReader System object

3-47

System Objects
audioDeviceWriter | audioPlayerRecorder | dsp.AudioFileReader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2016a

3 System objects in Audio System Toolbox

3-48

audioDeviceWriter System object

Play to sound card

Description
The audioDeviceWriter System object writes audio samples to an audio output device.
Properties of the audio device writer specify the driver, the device, and device attributes
such as sample rate, bit depth, and buffer size.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the
audio device writer data flow.

To stream data to an audio device:

1 Create the audioDeviceWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

 audioDeviceWriter System object

3-49

Creation

Syntax
deviceWriter = audioDeviceWriter
deviceWriter = audioDeviceWriter(sampleRateValue)
deviceWriter = audioDeviceWriter(___ ,Name,Value)

Description

deviceWriter = audioDeviceWriter returns a System object, deviceWriter, that
writes audio samples to an audio output device in real time.

deviceWriter = audioDeviceWriter(sampleRateValue) sets the SampleRate
property to sampleRateValue.

deviceWriter = audioDeviceWriter(___ ,Name,Value) sets each property Name
to the specified Value. Unspecified properties have default values.
Example: deviceWriter = audioDeviceWriter(48000,'BitDepth','8-bit
integer') creates a System object, deviceWriter, that operates at a 48 kHz sample
rate and an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

3 System objects in Audio System Toolbox

3-50

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or
'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO'
driver option, install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card
buffer size to the buffer size of your audioDeviceWriter System object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, set SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must have an Audio System Toolbox licence. If
the toolbox is not installed, specifying nondefault Driver values returns an error.
Data Types: char

Device — Device used to play audio samples
default audio device (default) | character vector

Device used to play audio samples, specified as a character vector. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char

SampleRate — Sample rate of signal sent to audio device (Hz)
44100 (default) | positive integer

Sample rate of signal sent to audio device, in Hz, specified as a positive integer. The
range of SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

BitDepth — Data type used by the device
'16-bit integer' (default) | '8-bit integer' | '24-bit integer' | '32-bit
float'

 audioDeviceWriter System object

3-51

Data type used by the device, specified as a character vector. Before performing digital-
to-analog conversion, the input data is cast to a data type specified by BitDepth.

To specify a nondefault BitDepth, you must have an Audio System Toolbox licence. If
the toolbox is not installed, specifying a nondefault BitDepth returns an error.
Data Types: char

SupportVariableSizeInput — Support variable frame size
false (default) | true

Option to support variable frame size, specified as true or false.

• false –– If the audioDeviceWriter object is locked, the input must have the same
frame size at each call. The buffer size of your audio device is the same as the input
frame size.

• true –– If the audioDeviceWriter object is locked, the input frame size can change
at each call. The buffer size of your audio device is specified through the BufferSize
property.

Data Types: char

BufferSize — Buffer size of audio device
4096 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If Driver is specified as 'ASIO', open the ASIO UI to set the sound card buffer
size to the BufferSize value of your audioDeviceWriter System object.

Dependencies

To enable this property, set SupportVariableSizeInput to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ChannelMappingSource — Source of mapping between input matrix and device channels
'Auto' (default) | 'Property'

3 System objects in Audio System Toolbox

3-52

Source of mapping between columns of input matrix and channels of audio output device,
specified as 'Auto' or 'Property'.

• 'Auto' –– Default settings determine the mapping between columns of input matrix
and channels of audio output device. For example, suppose that your input is a matrix
with four columns, and your audio device has four channels available. Column 1 of
your input data writes to channel 1 of your device, column 2 of your input data writes
to channel 2 of your device, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between
columns of input matrix and channels of audio output device.

Data Types: char

ChannelMapping — Nondefault mapping between input matrix and device channels
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of input matrix and channels of output device,
specified as a scalar or vector of valid channel indices. See the “Specify Channel Mapping
for audioDeviceWriter” on page 3-59 example for more information.

To selectively map between columns of the input matrix and your sound card's output
channels, you must have an Audio System Toolbox licence. If the toolbox is not installed,
specifying a nondefault ChannelMapping returns an error.

Dependencies

To enable this property, set ChannelMappingSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

 audioDeviceWriter System object

3-53

Syntax
numUnderrun = deviceWriter(audioToDevice)

Description

numUnderrun = deviceWriter(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device and returns the number of audio samples
underrun since the last call to deviceWriter.

Note: When you call the audioDeviceWriter System object, the audio device
specified by the Device property is locked. An audio device can be locked by only one
audioDeviceWriter at a time. To release the audio device, call release on your
audioDeviceWriter System object.

Input Arguments

audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are
treated as independent audio channels.

If audioToDevice is of data type 'double' or 'single', the audio device writer clips
values outside the range [–1, 1]. For other data types, the allowed input range is [min,
max] of the specified data type.
Data Types: single | double | int16 | int32 | uint8

Output Arguments

numUnderrun — Number of samples underrun
scalar

Number of samples by which the audio device writer queue was underrun since the last
call to deviceWriter.
Data Types: uint32

3 System objects in Audio System Toolbox

3-54

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceWriter
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader System object™ with default settings. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate. Call setup
to reduce the computational load of initialization in an audio stream loop.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileInfo.SampleRate);
setup(deviceWriter,...
 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

 audioDeviceWriter System object

3-55

In an audio stream loop, read an audio signal frame from the file, and write the frame to
your device.

while ~isDone(fileReader)
 audioData = fileReader();
 deviceWriter(audioData);
end

Close the input file and release the device.

release(fileReader);
release(deviceWriter);

Reduce Latency due to Output Device Buffer

Latency due to the output device buffer is the time delay of writing one frame of data.
Modify default properties of your audioDeviceWriter System object™ to reduce
latency due to device buffer size.

Create a dsp.AudioFileReader System object to read an audio file with default
settings.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate to match that
of the audio file reader.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Calculate the latency due to your device buffer, in seconds.

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency = 0.0464

Set the SamplesPerFrame property of your dsp.AudioFileReader System object to
256. Calculate the buffer latency in seconds.

fileReader.SamplesPerFrame = 256;
bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

3 System objects in Audio System Toolbox

3-56

bufferLatency = 0.0116

Determine and Decrease Underrun

Underrun refers to output signal silence, which occurs when the audio stream loop does
not keep pace with the output device. Determine the underrun of an audio stream loop,
add artificial computational load to the audio stream loop, and then modify properties of
your audioDeviceWriter System object™ to decrease underrun. Your results depend
on your computer.

Create a dsp.AudioFileReader System object, and specify the file to read. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object. Use the SampleRate of the file reader as
the SampleRate of the device writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);
setup(deviceWriter, ...
 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Run your audio stream loop with input from file and output to device. Print the total
samples underrun and the underrun in seconds.

totalUnderrun = 0;
while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
end
fprintf('Total samples underrun: %d.\n', ...
 totalUnderrun);
fprintf('Total seconds underrun: %d.\n', ...
 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.
Total seconds underrun: 0.

 audioDeviceWriter System object

3-57

Release your dsp.AudioFileReader and audioDeviceWriter System objects and set
your counter variable to zero.
release(fileReader);
release(deviceWriter);
totalUnderrun = 0;

Use pause to mimic an algorithm that takes 0.075 seconds to process. The pause causes
the audio stream loop to go slower than the device, which results in periods of silence in
the output audio signal.
while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n', ...
 totalUnderrun);
fprintf('Total seconds underrun: %d.\n', ...
 double(totalUnderrun)/double(deviceWriter.SampleRate));
Total samples underrun: 69632.
Total seconds underrun: 3.157914e+00.

Release your audioDeviceReader and dsp.AudioFileWriter and set the counter
variable to zero.
release(fileReader);
release(deviceWriter);
totalUnderrun = 0;

Set the frame size of your audio stream loop to 2048. Because the
SupportVariableSizeInput property of your audioDeviceWriter System object is
set to false, the buffer size of your audio device is the same size as the input frame size.
Increasing your device buffer size decreases underrun.
fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileReader.SamplesPerFrame = 2048;
fileInfo = audioinfo('speech_dft.mp3');

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);
setup(deviceWriter, ...
 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

3 System objects in Audio System Toolbox

3-58

Calculate the total underrun.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n', ...
 totalUnderrun);
fprintf('Total seconds underrun: %d.\n', ...
 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.
Total seconds underrun: 0.

The increased frame size reduces the total underrun of your audio stream loop. However,
increasing the frame size also increases latency. Other approaches to reduce underrun
include:

• Increasing the buffer size independent of input frame size. To increase buffer size
independent of input frame size, you must first set SupportVariableSizeInput to
true. This approach also increases latency.

• Decreasing the sample rate. Decreasing the sample rate reduces both latency and
underrun at the cost of signal resolution.

• Choosing an optimal driver and device for your system.

Specify Channel Mapping for audioDeviceWriter

Specify nondefault channel mapping for an audioDeviceWriter System object™. This
example is hardware specific. It assumes that your computer has a default audio output
device with two available channels.

Create an audioDeviceWriter System object™ with default settings.

deviceWriter = audioDeviceWriter;

By default, the audioDeviceWriter System object writes the maximum number of
channels available, corresponding to the columns of the input matrix. Use info to get
the maximum number of channels of your device.

 audioDeviceWriter System object

3-59

info(deviceWriter)

ans =

 struct with fields:

 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

If deviceWriter is called with one column of data, two channels are written to your
audio output device. Both channels correspond to the one column of data.

Use the audioOscillator System object to output a tone to your audioDeviceWriter
System object. Your object, sineGenerator, returns a vector when called.

sineGenerator = audioOscillator;

Write the sine tone to your audio device. If you are using headphones, you can hear the
tone from both channels.

count = 0;
while count < 500
 sine = sineGenerator();
 deviceWriter(sine);
 count = count + 1;
end

If your audioDeviceWriter System object is called with two columns of data, two
channels are written to your audio output device. The first column corresponds to
channel 1 of your audio output device, and the second column corresponds to channel 2 of
your audio output device.

Write a two-column matrix to your audio output device. Column 1 corresponds to the sine
tone, and column 2 corresponds to a static signal. If you are using headphones, you can
hear the tone from one speaker and the static from the other speaker.

count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);

3 System objects in Audio System Toolbox

3-60

 count = count + 1;
end

Specify alternative mappings between channels of your device and columns of the output
matrix by indicating the output channel number at an index corresponding to the input
column. Set ChannelMappingSource to 'Property'. Indicate that the first column of
your input data writes to channel 2 of your output device, and that the second column of
your input data writes to channel 1 of your output device. To modify the channel
mapping, you must first unlock the audioDeviceReader System object.

release(deviceWriter);
deviceWriter.ChannelMappingSource = 'Property';
deviceWriter.ChannelMapping = [2,1];

Play your audio signals with reversed mapping. If you are using headphones, notice that
the tone and static have switched speakers.
count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);
 count = count + 1;
end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library

files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see “Run
Audio I/O Features Outside MATLAB and Simulink”.

 audioDeviceWriter System object

3-61

See Also
Functions
asiosettings | getAudioDevices

Blocks
Audio Device Writer

System Objects
audioDeviceReader | audioPlayerRecorder | dsp.AudioFileReader |
dsp.AudioFileWriter

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”
Measure Audio Latency
“Real-Time Audio in MATLAB”

Introduced in R2016a

3 System objects in Audio System Toolbox

3-62

audioOscillator System object

Generate sine, square, and sawtooth waveforms

Description
The audioOscillator System object generates tunable waveforms. Typical uses
include the generation of test signals for test benches, and the generation of control
signals for audio effects. Properties of the audioOscillator System object specify the
type of waveform generated.

To generate tunable waveforms:

1 Create the audioOscillator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
osc = audioOscillator

 audioOscillator System object

3-63

osc = audioOscillator(signalTypeValue)
osc = audioOscillator(signalTypeValue,frequencyValue)
osc = audioOscillator(___ ,Name,Value)

Description

osc = audioOscillator creates an audio oscillator System object, osc, with default
property values.

osc = audioOscillator(signalTypeValue) sets the SignalType property to
signalTypeValue.

osc = audioOscillator(signalTypeValue,frequencyValue) sets the Frequency
property to frequencyValue.

osc = audioOscillator(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: osc = audioOscillator('SignalType','sine','Frequency',
8000,'DCOffset',1) creates a System object, osc, which generates 8 kHz sinusoids
with a DC offset of one.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

SignalType — Type of generated waveform
'sine' (default) | 'square' | 'sawtooth'

Type of waveform generated by your audioOscillator object, specified as 'sine',
'square', or 'sawtooth'.

3 System objects in Audio System Toolbox

3-64

The waveforms are generated using the algorithms specified by the sin, square, and
sawtooth functions.

Tunable: No
Data Types: char

Frequency — Frequency of generated waveform (Hz)
100 (default) | real scalar | vector of real scalars

Frequency of generated waveform in Hz, specified as a real scalar or vector of real scalars
greater than or equal to 0.

• For sine waveforms, specify Frequency as a scalar or as a vector of length
NumTones.

• For square waveforms, specify Frequency as a scalar.
• For sawtooth waveforms, specify Frequency as a scalar.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated waveform
1 (default) | real scalar | vector of real scalars

Amplitude of generated waveform, specified as a real scalar or vector of real scalars
greater than or equal to 0.

• For sine waveforms, specify Amplitude as a vector of length NumTones.
• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

The generated waveform is multiplied by the value specified by Amplitude at the
output, before DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated waveform
0 (default) | real scalar | vector of real scalars

 audioOscillator System object

3-65

Normalized phase offset of generated waveform, specified as a real scalar or vector of real
scalars with values in the range [0, 1]. The range is a normalized 2π-radian interval.

• For sine waveforms, specify PhaseOffset as a vector of length NumTones.
• For square waveforms, specify PhaseOffset as a scalar.
• For sawtooth waveforms, specify PhaseOffset as a scalar.

Tunable: No
Data Types: single | double

DCOffset — Value added to each element of generated waveform
0 (default) | real scalar | vector of real scalars

Value added to each element of generated waveform, specified as a real scalar or vector of
real scalars.

• For sine waveforms, specify DCOffset as a vector of length NumTones.
• For square waveforms, specify DCOffset as a scalar.
• For sawtooth waveforms, specify DCOffset as a scalar.

Tunable: Yes
Data Types: single | double

NumTones — Number of pure sine waveform tones
1 (default) | positive integer

Number of pure sine waveform tones summed and then generated by the audio oscillator.

Individual tones are generated based on values specified by Frequency, Amplitude,
PhaseOffset, and DCOffset.

Tunable: No
Dependencies

To enable this property, set SignalType to 'sine'.
Data Types: single | double

DutyCycle — Square waveform duty cycle
0.5 (default) | scalar in the range [0, 1]

3 System objects in Audio System Toolbox

3-66

Square waveform duty cycle, specified as a scalar in the range [0, 1].

Square waveform duty cycle is the percentage of one period in which the waveform is
above the median amplitude. A DutyCycle of 1 or 0 is equivalent to a DC offset.

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'square'.
Data Types: single | double

Width — Sawtooth width
1 (default) | scalar in the range [0, 1]

Sawtooth width, specified as a scalar in the range [0, 1].

Sawtooth width determines the point in a sawtooth waveform period at which the
maximum occurs.

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'sawtooth'.
Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1, 192000].

This property determines the vector length that your audioOscillator object outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Sample rate of generated waveform (Hz)
44100 (default) | positive scalar

 audioOscillator System object

3-67

Sample rate of generated waveform in Hz, specified as a positive scalar greater than
twice the value specified by Frequency.

Tunable: Yes
Data Types: single | double

OutputDataType — Data type of generated waveform
'double' (default) | 'single'

Data type of generated waveform, specified as 'double' or 'single'.

Tunable: Yes
Data Types: char

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
waveform = osc()

Description

waveform = osc() generates a waveform output, waveform. The type of waveform is
specified by the algorithm and properties of the System object, osc.

Output Arguments

waveform — Waveform output from oscillator
column vector

3 System objects in Audio System Toolbox

3-68

Waveform output from the audio oscillator, returned as a column vector with length
specified by the SamplesPerFrame property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioOscillator
createAudioPluginClass Create audio plugin class that implements functionality of

System object

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the audioOscillator System object to user-facing parameters:
Property Range Mapping Units
Frequency [0.1, 20000] log Hz
Amplitude [0, 10] linear no units
DCOffset [–10, 10] linear no units

 audioOscillator System object

3-69

Property Range Mapping Units
DutyCycle
(available when you
set SignalType to
'square')

[0, 1] linear no units

Width (available
when you set
SignalType to
'sawtooth')

[0, 1] linear no units

Examples

Generate Variable-Frequency Sine Wave

Use the audioOscillator System object™ to generate a variable-frequency sine wave.

Create an audio oscillator to generate a sine wave. Use the default settings.

osc = audioOscillator;

Create a time scope to visualize the variable-frequency sine wave generated by the audio
oscillator.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction', 'Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Sine Wave');

Place the audio oscillator in an audio stream loop. Increase the frequency of your
sinewave in 50-Hz increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 sineWave = osc();
 scope(sineWave);

3 System objects in Audio System Toolbox

3-70

 if mod(counter,1000)==0
 osc.Frequency = osc.Frequency + 50;
 end
end

 audioOscillator System object

3-71

Create a Melody by Tuning Oscillation Frequency

Tune the frequency of an audio oscillator at regularly spaced intervals to create a
melody. Play the melody to your audio output device.

Create a structure to hold the frequency values of notes in a melody.

notes = struct('C4',261.63,'E4',329.63,'G4sharp',415.30,'A4',440,'B4',493.88, ...
 'C5',523.25,'D5',587.25,'D5sharp',622.25,'E5',659.25,'Silence',0);

Create audioOscillator and audioDeviceWriter System objects™. Use the default
settings.

osc = audioOscillator;
aDW = audioDeviceWriter;

Create a vector with the initial melody of Fur Elise.

melody = [notes.Silence notes.Silence,...
 notes.E5 notes.D5sharp notes.E5 notes.D5sharp notes.E5 notes.B4 ...
 notes.D5 notes.C5 notes.A4 notes.A4 notes.Silence ...
 notes.C4 notes.E4 notes.A4 notes.B4 notes.B4 notes.Silence ...
 notes.E4 notes.G4sharp notes.B4 notes.C5 notes.C5 notes.Silence];

Specify the note duration in seconds. In an audio stream loop, call your audio oscillator
and write the sound to your audio device. Update the frequency of the audio oscillator in
noteDuration time steps to follow the melody. As a best practice, release your objects
once complete.

noteDuration = 0.3;

i = 1;
tic
while i < numel(melody)
 tone = osc();
 aDW(tone);
 if toc >= noteDuration
 i = i + 1;
 osc.Frequency = melody(i);
 tic
 end
end

3 System objects in Audio System Toolbox

3-72

release(osc);
release(aDW);

Control Cutoff Frequency of Lowpass Filter

Create a low-frequency oscillator (LFO) lowpass filter, using the audioOscillator as a
control signal.

Create dsp.AudioFileReader and audioDeviceWriter System objects to read from
an audio file and write to your audio device. Create a biquad filter object to apply lowpass
filtering to your audio signal.

fileReader = dsp.AudioFileReader('Filename','Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
lowpassFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

Create an audio oscillator object. Your audio oscillator controls the cutoff frequency of the
lowpass filter in an audio stream loop.

osc = audioOscillator('SignalType','sawtooth', ...
 'DCOffset',0.05, ...
 'Amplitude',0.03, ...
 'SamplesPerFrame',fileReader.SamplesPerFrame, ...
 'SampleRate',fileReader.SampleRate, ...
 'Frequency',5);

In a loop, filter the audio signal through the lowpass filter. Write the output signal to
your audio device.

while ~isDone(fileReader)
 audioIn = fileReader();
 ctrlSignal = osc();
 [B,A] = designVarSlopeFilter(48,ctrlSignal(end));
 audioOut = lowpassFilter(audioIn,B,A);
 deviceWriter(audioOut);
end

As a best practice, release objects once complete.

 audioOscillator System object

3-73

release(osc)
release(fileReader)
release(deviceWriter)

For a more complete implementation of an LFO Filter, see
audiopluginexample.LFOFilter in the “Audio Plugin Example Gallery”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
System Objects
wavetableSynthesizer

Introduced in R2016a

3 System objects in Audio System Toolbox

3-74

matlab:edit('audiopluginexample.LFOFilter')

crossoverFilter System object

Audio crossover filter

Description
The crossoverFilter System object implements an audio crossover filter, which is
used to split an audio signal into two or more frequency bands. Crossover filters are
multiband filters whose overall magnitude frequency response is flat.

To implement an audio crossover filter:

1 Create the crossoverFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

 crossoverFilter System object

3-75

Creation

Syntax
crossFilt = crossoverFilter
crossFilt = crossoverFilter(nCrossovers)
crossFilt = crossoverFilter(nCrossovers,xFrequencies)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs)
crossFilt = crossoverFilter(___ ,Name,Value)

Description

crossFilt = crossoverFilter creates a System object, crossFilt, that
implements an audio crossover filter.

crossFilt = crossoverFilter(nCrossovers) sets the NumCrossovers property to
nCrossovers.

crossFilt = crossoverFilter(nCrossovers,xFrequencies) sets the
CrossoverFrequencies property to xFrequencies.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes) sets the
CrossoverSlopes property to xSlopes.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs) sets
the SampleRate property to Fs.

crossFilt = crossoverFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: crossFilt = crossoverFilter(2,'CrossoverFrequencies',
[100,800],'CrossoverSlopes',[6,48]) creates a System object, crossFilt, with
two crossovers located at 100 Hz and 800 Hz, and crossover slopes of 6 dB/octave and 48
dB/octave, respectively.

3 System objects in Audio System Toolbox

3-76

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

NumCrossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

Number of magnitude response band crossings, specified as a scalar integer in the range
1 to 4.

The number of bands output when implementing crossover filtering is one more than the
NumCrossovers value.
Number of magnitude response band
crossings

Number of bands output

1 two-band
2 three-band
3 four-band
4 five-band

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

CrossoverFrequencies — Crossover frequencies (Hz)
100 (default) | scalar | vector

Crossover frequencies in Hz, specified as a scalar or vector of real values of length
NumCrossovers.

Crossover frequencies are the intersections of magnitude response bands of the
individual two-band crossover filters used in the multiband crossover filter.

 crossoverFilter System object

3-77

Tunable: Yes
Data Types: single | double

CrossoverSlopes — Crossover slopes (dB/octave)
12 (default) | scalar | vector

Crossover slopes in dB/octave, specified as a scalar or vector of real values in the range
[6:6:48]. If a specified crossover slope is not inside the range, the slope is rounded to the
nearest allowed value.

• If CrossoverSlopes is a scalar, all two-band component crossover slopes take that
value.

• If CrossoverSlopes is a vector of length NumCrossovers, the respective two-band
component crossover slopes take those values.

Crossover slopes are the slopes of individual bands at the associated crossover frequency,
as specified in the two-band component crossover.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

3 System objects in Audio System Toolbox

3-78

Syntax
[band1,...,bandN] = crossFilt(audioIn)

Description

[band1,...,bandN] = crossFilt(audioIn) applies a crossover filter on the input,
audioIn, and returns the filtered output bands, [band1,...,bandN], where N =
NumCrossovers + 1.

Input Arguments

audioIn — Audio input to crossover filter
matrix

Audio input to the crossover filter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments

[band1,...,bandN] — Audio bands output from crossover filter
set of matrices

Audio bands output from the crossover filter, returned as a set of N bands. The
NumCrossovers property determines the number of return arguments: N =
NumCrossovers + 1. The size of each output argument is the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

 crossoverFilter System object

3-79

Specific to crossoverFilter
visualize Visualize magnitude response of crossover filter
cost Estimate implementation cost of audio System objects
createAudioPluginClass Create audio plugin class that implements functionality of

System object

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the crossoverFilter System object to user-facing parameters:
Property Range Mapping Unit
CrossoverFrequen
cies

[20, 20000] linear Hz

CrossoverSlopes [6, 48] linear dB/octave

Examples

Pass Noise Signal Through Crossover Filter

Use the crossoverFilter System object™ to split Gaussian noise into three separate
frequency bands.

Create a 5 second noise signal that assumes a 12,000 Hz sample rate.

3 System objects in Audio System Toolbox

3-80

noise = randn(12000*5,1);

Create a crossoverFilter System object with 2 crossovers (3 bands), crossover
frequencies at 4 kHz and 8 kHz, a slope of 48 dB/octave, and a sample rate of 24 kHz.
crossFilt = crossoverFilter(...
 'NumCrossovers',2,...
 'CrossoverFrequencies',[4000,8000],...
 'CrossoverSlopes',48,...
 'SampleRate',24000);

Visualize the magnitude response of your crossover filter object.
visualize(crossFilt)

Call your crossover filter like a function with the noise signal as the argument.

 crossoverFilter System object

3-81

[y1,y2,y3] = crossFilt(noise);

Visualize the results using a spectrogram.

figure('Position',[100,100,800,700]);
subplot(4,1,1)
 spectrogram(noise,120,100,6000,24000,'yaxis')
 title('Noise')
subplot(4,1,2)
 spectrogram(y1,120,100,6000,24000,'yaxis')
 title('y1')
subplot(4,1,3)
 spectrogram(y2,120,100,6000,24000,'yaxis')
 title('y2')
subplot(4,1,4)
 spectrogram(y3,120,100,6000,24000,'yaxis')
 title('y3')

3 System objects in Audio System Toolbox

3-82

Split Audio Signal into Three Bands

Use the crossoverFilter System object™ to split an audio signal into three frequency
bands.

 crossoverFilter System object

3-83

Create the dsp.AudioFileReader and audioDeviceWriter System objects. Use the
sample rate of the reader as the sample rate of the writer. Call setup to reduce the
computation load of initialization in an audio stream loop.

samplesPerFrame = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

setup(fileReader)
setup(deviceWriter,ones(samplesPerFrame,2))

Create a crossoverFilter System object with 2 crossovers (3 bands), crossover
frequencies at 500 Hz and 1 kHz, and a slope of 18 dB/octave. Use the sample rate of the
reader as the sample rate of the crossover filter.

crossFilt = crossoverFilter(...
 'NumCrossovers',2, ...
 'CrossoverFrequencies',[500,1000], ...
 'CrossoverSlopes',18, ...
 'SampleRate',fileReader.SampleRate);

setup(crossFilt,ones(samplesPerFrame,2))

Visualize the bands of the crossover filter.

visualize(crossFilt)

3 System objects in Audio System Toolbox

3-84

Get the cost of the crossover filter.

cost(crossFilt)

ans =

 struct with fields:

 NumCoefficients: 48
 NumStates: 18
 MultiplicationsPerInputSample: 48
 AdditionsPerInputSample: 37

 crossoverFilter System object

3-85

Create a spectrum analyzer to visualize the effect of the crossover filter.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',fileReader.SampleRate, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title', ...
 'Crossover Bands and Reconstructed Signal', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original Signal','Band 1', ...
 'Band 2','Band 3','Sum'});

Play 10 seconds of the audio signal. Visualize the spectrum of the original audio, the
crossover bands, and the reconstructed signal (sum of bands).

setup(scope,ones(samplesPerFrame,5))
count = 0;
while count < (fileReader.SampleRate/samplesPerFrame)*10
 originalSignal = fileReader();
 [band1,band2,band3] = crossFilt(originalSignal);
 sumOfBands = band1 + band2 + band3;
 scope([originalSignal(:,1), ...
 band1(:,1), ...
 band2(:,1), ...
 band3(:,1), ...
 sumOfBands(:,1)])
 deviceWriter(sumOfBands);
 count = count+1;
end

release(fileReader)
release(crossFilt)
release(scope)
release(deviceWriter)

3 System objects in Audio System Toolbox

3-86

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance
refers to the s, z, and sh sounds in speech, which can be disproportionately emphasized
during recording. es sounds fall under the category of unvoiced speech with all
consonants and have a higher frequency than voiced speech. In this example, you apply
split-band de-essing to a speech signal by separating the signal into high and low
frequencies, applying an expander to diminish the sibilant frequencies, and then
remixing the channels.

 crossoverFilter System object

3-87

Create a dsp.AudioFileReader System object™ and an audioDeviceWriter System
object to read from a sound file and write to an audio device. Listen to the unprocessed
signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Sibilance.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the
expander to the sample rate of the audio file. Create a two-band crossover filter with a
crossover of 3000 Hz. Sibilance is usually found in this range. Set the crossover slope to
12. Plot the frequency response of the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...
 'AttackTime', 0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

3 System objects in Audio System Toolbox

3-88

Create a dsp.TimeScope System object to visualize the original and processed audio
signals.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',4, ...
 'BufferLength',44100*8, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

 crossoverFilter System object

3-89

1 Read in a frame of the audio file.
2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRExpander)

3 System objects in Audio System Toolbox

3-90

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in words beginning with p, d, and g sounds. Plosives can be emphasized by

 crossoverFilter System object

3-91

the recording process and are often displeasurable to hear. In this example, you minimize
the plosives of a speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and a audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Play the
unprocessed signal. Then release the file reader and device writer.
fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Plosives.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
'Property' and use the default 0 dB MakeUpGain property value. Create a time scope
to visualize the processed and unprocessed audio signal.
[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');
biquadFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',250, ...
 'CrossoverSlopes',48);

dRCompressor = compressor(...
 'Threshold',-35, ...
 'Ratio',10, ...
 'KneeWidth',20, ...
 'AttackTime',1e-4, ...
 'ReleaseTime',3e-1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

3 System objects in Audio System Toolbox

3-92

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',3, ...
 'BufferLength',fileReader.SampleRate*3*2, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);
end

release(deviceWriter)
release(fileReader)
release(scope)

 crossoverFilter System object

3-93

release(crossFilt)
release(dRCompressor)

3 System objects in Audio System Toolbox

3-94

Algorithms
The crossover System object is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented with

 crossoverFilter System object

3-95

Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N, implemented as direct-form Ⅱ transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form Ⅱ transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the
branches of your crossover pair are in-phase.

3 System objects in Audio System Toolbox

3-96

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of
the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References

[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems."
Journal of Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 crossoverFilter System object

3-97

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Crossover Filter

System Objects
multibandParametricEQ

Introduced in R2016a

3 System objects in Audio System Toolbox

3-98

visualize
Visualize magnitude response of crossover filter

Syntax
visualize(crossFilt)
visualize(crossFilter,NFFT)

Description
visualize(crossFilt) plots the magnitude response of the crossoverFilter. The
plot is updated automatically when properties of the object change.

visualize(crossFilter,NFFT) specifies an N-point FFT used to calculate the
magnitude response.

Examples

Visualize Magnitude Response of Crossover Filter

Create an object of the crossoverFilter System object™, and then call visualize to
plot the magnitude response of the filter.

crossFilt = crossoverFilter;
visualize(crossFilt)

 visualize

3-99

Modify the crossover frequency and observe that the plot is updated automatically.

crossFilt.CrossoverFrequencies = 500;

3 System objects in Audio System Toolbox

3-100

Input Arguments
crossFilt — Crossover filter to visualize
object of crossoverFilter System object

Crossover filter whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.

 visualize

3-101

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
System Objects
crossoverFilter

Introduced in R2016a

3 System objects in Audio System Toolbox

3-102

graphicEQ System object

Standards-based graphic equalizer

Description
The graphicEQ System object implements a graphic equalizer that can tune the gain on
individual octave or fractional octave bands. The object filters the data independently
across each input channel over time using the filter specifications. Center and edge
frequencies of the bands are based on the ANSI S1.11-2004 standard.

To equalize an audio signal:

1 Create the graphicEQ object and set its properties.

 graphicEQ System object

3-103

2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
equalizer = graphicEQ
equalizer = graphicEQ(Name,Value)

Description

equalizer = graphicEQ creates a graphic equalizer with default values.

equalizer = graphicEQ(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: equalizer = graphicEQ('Structure','Parallel','EQOrder','1/3
octave') creates a System object, equalizer, which implements filtering using a
parallel structure and one-third octave filter bandwidth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Gains — Gain of each octave or fractional octave band (dB)
[0 0 0 0 0 0 0 0 0 0] (default) | 10-, 15-, or 30-element row vector

3 System objects in Audio System Toolbox

3-104

Gain of each octave of fractional octave band in dB, specified as a row vector with a
length determined by the Bandwidth property:

• '1 octave' –– Specify gains as a 10-element row vector.
• '2/3 octave' –– Specify gains as a 15-element row vector.
• '1/3 octave' –– Specify gains as a 30-element row vector.

Example: equalizer = graphicEQ('Bandwidth','2/3 octave','Gains',
[5,5,5,5,5,0,0,0,0,0,-5,-5,-5,-5,-5]) creates a two-third octave graphic
equalizer with specified gains.

You can tune the gains of your graphic equalizer when the object is locked. However, you
cannot tune the length of the gains when the object is locked.

Tunable: Yes
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | positive even integer

Order of individual equalizer bands, specified as a positive even integer. All equalizer
bands have the same order.

Tunable: No
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/3 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', or '1/3
octave'.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer.
The ISO 266:1997(E) standard specifies corresponding preferred frequencies for labeling
purposes.

1-Octave Bandwidth
Center frequencies 32 63 126 251 501 1000 1995 3981

7943 15849

 graphicEQ System object

3-105

Edge frequencies 22 45 89 178 355 708 1413 2818
5623 1122 22387

Preferred frequencies 31.5 63 125 250 500 1000 2000
4000 8000 16000

2/3-Octave Bandwidth
Center frequencies 25 40 63 100 158 251 398 631 1000

1585 2512 3981 6310 10000 15849
Edge frequencies 20 32 50 79 126 200 316 501 794

1259 1995 3162 5012 7943 12589
19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000
1600 2500 4000 6300 10000 16000

1/3-Octave Bandwidth
Center frequencies 25 32 40 50 63 79 100 126 158 200

251 316 398 501 631 794 1000 1259
1585 1995 2512 3162 3981 5012
6310 7943 10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178
224 282 355 447 562 708 891 1122
1413 1778 2239 2818 3548 4467
5623 7079 8913 11220 14125 17783
22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160
200 250 315 400 500 630 800 1000
1250 1600 2000 2500 3150 4000
5000 6300 8000 10000 12500 16000
20000

Tunable: No
Data Types: char

Structure — Type of implementation
'Cascade' (default) | 'Parallel'

3 System objects in Audio System Toolbox

3-106

Type of implementation, specified as 'Cascade' or 'Parallel'. See “Algorithms” on
page 3-111 and “Graphic Equalization” for information about these implementation
structures.

Tunable: No
Data Types: char

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = equalizer(audioIn)

Description

audioOut = equalizer(audioIn) performs graphic equalization on the input signal,
audioIn, and returns the equalized signal, audioOut. The type of equalization is
specified by the algorithm and properties of the graphicEQ System object, equalizer.

Input Arguments

audioIn — Audio input to graphic equalizer
matrix

Audio input to the graphic equalizer, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

 graphicEQ System object

3-107

Output Arguments

audioOut — Audio output from graphic equalizer
matrix

Audio output from the graphic equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to graphicEQ
createAudioPluginClass Create audio plugin class that implements functionality of

System object
coeffs Get graphic equalizer coefficients
info Get standards-based frequencies for graphic equalizer
visualize Visualize magnitude response of graphic equalizer

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

3 System objects in Audio System Toolbox

3-108

The createAudioPluginClass and configureMIDI functions map tunable properties
of the graphicEQ System object to user-facing parameters:
Property Range Mapping Unit
Gains [–20, 20] linear dB

Examples

Perform Graphic Equalization

Design and create an object for graphic equalization and then perform equalization on an
audio signal.

Create objects to read from an audio file and write to your audio device. Use the sample
rate of the reader as the sample rate of the writer.
frameLength = 512;
reader = dsp.AudioFileReader(...
 'Filename','RockDrums-48-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
player = audioDeviceWriter(...
 'SampleRate',reader.SampleRate);

In an audio stream loop, read audio from a file and play the audio through your audio
device.
while ~isDone(reader)
 x = reader();
 player(x);
end
release(reader)
release(player)

Create a one-octave graphic equalizer implemented with a cascade structure. Use the
sample rate of the reader as the sample rate of the equalizer.
equalizer = graphicEQ(...
 'Bandwidth','1 octave', ...
 'Structure','Cascade', ...
 'SampleRate',reader.SampleRate);

Specify to increase the gain on low frequencies and then visualize the equalizer.

 graphicEQ System object

3-109

equalizer.Gains = [5 5 5 5 0 0 0 0 0 0];
visualize(equalizer)

In an audio stream loop, read audio from a file, apply equalization, and then play the
equalized audio through your audio device.

while ~isDone(reader)
 x = reader();
 y = equalizer(x);
 player(y);
end

3 System objects in Audio System Toolbox

3-110

release(reader)
release(player)

Algorithms
The implementation of your graphic equalizer depends on the Structure property. See
“Graphic Equalization” for a discussion of the pros and cons of the parallel and cascade
implementations. Refer to the following sections to understand how these algorithms are
implemented in Audio System Toolbox.

Parallel Structure

The parallel implementation designs the individual equalizers using the octaveFilter
design method and spaces them on the spectrum according to the ANSI S1.11-2004
standard.

If you set the SampleRate property so that the Nyquist frequency (SampleRate/2) is
less than the final bandpass edge defined by the ANSI S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the
Nyquist frequency.

• The final filter is implemented as a highpass filter designed by the designParamEQ
function.

 graphicEQ System object

3-111

1 The input signal is fed into a filterbank of M filters, where M depends on the
specified Bandwidth and SampleRate properties.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding
element of the Gains property.

3 The branches are summed and the output signal is returned.

Cascade Structure

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.

If the EQOrder property is set to 2, then a gain correction is calculated according to [1].
The gain correction is independent of the requested gains. The gain correction is
recomputed during the real-time processing only if the SampleRate property is modified.

If the EQOrder property is not set to 2, no gain correction is applied, and the requested
gains are passed on to the multibandParametricEQ object.

The input signal is fed into a cascade of M biquad filters, where M depends on the
specified Bandwidth and SampleRate properties.

3 System objects in Audio System Toolbox

3-112

References

[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic
Equalizer with Accurate Frequency Response Control." Presented at the 139th
Convention of the AES, New York, October 2015.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

[3] International Organization for Standardization. Acoustics –– Preferred frequencies.
ISO 266:1997(E). Second Edition. 1997.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
System Objects
multibandParametricEQ

Blocks
Graphic EQ | Parametric EQ Filter

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Graphic Equalization”

 graphicEQ System object

3-113

“Equalization”

Introduced in R2017b

3 System objects in Audio System Toolbox

3-114

coeffs
Get graphic equalizer coefficients

Syntax
[B,A] = coeffs(equalizer)

Description
[B,A] = coeffs(equalizer) returns the coefficients of the filters used in the graphic
equalizer System object, equalizer. If Structure is set to 'Cascade', the coefficients
are returned as second-order sections. If Structure is set to 'Parallel', the
coefficients are returned as fourth-order sections.

Examples

Get Coefficients for Cascade Structure

Create a graphicEQ System object™ using the default Cascade structure and 1-octave
bandwidth. A 1-octave bandwidth graphic equalizer consists of 10 bandpass filters.
Specify the gains of each filter usings the Gains property.

equalizer = graphicEQ('Gains',randn(1,10))

equalizer =

 graphicEQ with properties:

 EQOrder: 2
 Bandwidth: '1 octave'
 Structure: 'Cascade'
 Gains: [1x10 double]
 SampleRate: 44100

 coeffs

3-115

Call coeffs to return the coefficients of the filter designed by the graphic equalizer.
Because the structure of the object is Cascade, the coefficients are returned as 2-D
matrix. Columns correspond to the cascaded stages of the filter.

[B,A] = coeffs(equalizer)

B =

 Columns 1 through 7

 1.0000 1.0009 0.9978 1.0019 1.0012 0.9923 0.9968
 -1.9968 -1.9944 -1.9848 -1.9757 -1.9471 -1.8775 -1.7416
 0.9968 0.9936 0.9873 0.9750 0.9509 0.9044 0.8176

 Columns 8 through 10

 0.9897 1.0926 1.1576
 -1.3954 -0.6238 0.6739
 0.6648 0.3749 -0.0954

A =

 Columns 1 through 7

 -1.9968 -1.9944 -1.9848 -1.9757 -1.9471 -1.8775 -1.7416
 0.9969 0.9945 0.9851 0.9769 0.9521 0.8967 0.8145

 Columns 8 through 10

 -1.3954 -0.6238 0.6739
 0.6545 0.4675 0.0623

Get Coefficients for Parallel Structure

Create a graphicEQ System object™ with a Parallel structure and 1-octave
bandwidth. A 1-octave bandwidth graphic equalizer consists of 10 bandpass filters.
Specify the gains of each filter usings the Gains property.

equalizer = graphicEQ('Structure','Parallel','Gains',randn(1,10))

3 System objects in Audio System Toolbox

3-116

equalizer =

 graphicEQ with properties:

 EQOrder: 2
 Bandwidth: '1 octave'
 Structure: 'Parallel'
 Gains: [1x10 double]
 SampleRate: 44100

Call coeffs to return the coefficients of the filter designed by the graphic equalizer.
Because the structure of the object is Parallel, the coefficients are returned as 3-D
matrix. Pages correspond to the parallel branches of the filter.
[B,A] = coeffs(equalizer)

B(:,:,1) =

 0.0017
 0
 -0.0017
 0
 0

B(:,:,2) =

 0.0039
 0
 -0.0039
 0
 0

B(:,:,3) =

 0.0048
 0
 -0.0048
 0
 0

 coeffs

3-117

B(:,:,4) =

 0.0138
 0
 -0.0138
 0
 0

B(:,:,5) =

 0.0255
 0
 -0.0255
 0
 0

B(:,:,6) =

 0.0411
 0
 -0.0411
 0
 0

B(:,:,7) =

 0.0869
 0
 -0.0869
 0
 0

B(:,:,8) =

 0.1752
 0
 -0.1752
 0
 0

3 System objects in Audio System Toolbox

3-118

B(:,:,9) =

 0.4475
 0
 -0.4475
 0
 0

B(:,:,10) =

 0.6782
 -0.6782
 0
 0
 0

A(:,:,1) =

 1.0000
 -1.9968
 0.9968
 0
 0

A(:,:,2) =

 1.0000
 -1.9936
 0.9937
 0
 0

A(:,:,3) =

 1.0000
 -1.9871
 0.9874
 0

 coeffs

3-119

 0

A(:,:,4) =

 1.0000
 -1.9738
 0.9751
 0
 0

A(:,:,5) =

 1.0000
 -1.9459
 0.9509
 0
 0

A(:,:,6) =

 1.0000
 -1.8850
 0.9043
 0
 0

A(:,:,7) =

 1.0000
 -1.7442
 0.8174
 0
 0

A(:,:,8) =

 1.0000
 -1.3992
 0.6632

3 System objects in Audio System Toolbox

3-120

 0
 0

A(:,:,9) =

 1.0000
 -0.5534
 0.4072
 0
 0

A(:,:,10) =

 1.0000
 0.0139
 0
 0
 0

Input Arguments
equalizer — Object of graphicEQ
object

Object of the graphicEQ System object.

Output Arguments
B — Numerator filter coefficients
matrix | array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on the
implementation structure.

• 'Cascade' –– 3-by-(number of bandpass equalizers × EQOrder/2) matrix
• 'Parallel' –– 5-by-(ceil(EQOrder/4))-by-(number of bandpass equalizers) matrix

 coeffs

3-121

The number of bandpass equalizers depends on the Bandwidth property of your
equalizer.

• 1-octave –– 10 filters
• 2/3-octave –– 15 filters
• 1/3-octave –– 30 filters

Data Types: single | double

A — Denominator filter coefficients
matrix | array

Denominator filter coefficients, returned as a 2-D matrix or 3-D array, depending on the
implementation structure.

• 'Cascade' –– 2-by-(number of bandpass equalizers × EQOrder/2) matrix. The
leading unity coefficient is not returned.

• 'Parallel'–– 5-by-(ceil(EQOrder/4))-by-(number of bandpass equalizers) matrix

The number of bandpass equalizers depends on the Bandwidth property of your
equalizer.

• 1-octave –– 10 filters
• 2/3-octave –– 15 filters
• 1/3-octave –– 30 filters

Data Types: single | double

See Also
System Objects
graphicEQ

Topics
“Equalization”

Introduced in R2017b

3 System objects in Audio System Toolbox

3-122

info
Get standards-based frequencies for graphic equalizer

Syntax
eqInfo = info(equalizer)

Description
eqInfo = info(equalizer) returns a structure, eqInfo, containing center, edge, and
preferred frequencies based on the ANSI S1.11-2004 and ISO 266:1997(E) standards.

Examples

Get Graphic Equalizer Standards-Based Frequencies

Create an object of the graphicEQ System object™ and then call info to return a
structure containing stadards-based center, edge, and preferred frequencies.

equalizer = graphicEQ;
info(equalizer)

ans =

 struct with fields:

 CenterFrequencies: [1x10 double]
 EdgeFrequencies: [1x11 double]

 info

3-123

 PreferredFrequencies: [31.5000 63 125 250 500 1000 2000 4000 8000 16000]

Input Arguments
equalizer — System object to get information from
System object

System object to get information from.

Output Arguments
eqInfo — Struct containing object information
struct

Struct containing information about the System object, equalizer.

See Also
System Objects
graphicEQ

Introduced in R2017b

3 System objects in Audio System Toolbox

3-124

visualize
Visualize magnitude response of graphic equalizer

Syntax
visualize(equalizer)
visualize(equalizer,NFFT)

Description
visualize(equalizer) plots the magnitude response of the graphicEQ object,
equalizer. The plot is updated automatically when properties of the object change.

visualize(equalizer,NFFT) specifies an N-point FFT used to calculate the
magnitude response.

Examples

Visualize Magnitude Response of Graphic Equalizer

Create a default object of the graphicEQ System object™ and then call visualize.

equalizer = graphicEQ;
visualize(equalizer)

 visualize

3-125

Set the gains of the graphic equalizer to new values. The visualization of the magnitude
response updates automatically.

equalizer.Gains = [-1,1,2,3,3,2,-10,5,5,-10];

3 System objects in Audio System Toolbox

3-126

Input Arguments
equalizer — Graphic equalizer to visualize
object of graphicEQ System object

Graphic equalizer whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

 visualize

3-127

See Also
System Objects
graphicEQ

Introduced in R2017b

3 System objects in Audio System Toolbox

3-128

loudnessMeter System object

Standard-compliant loudness measurements

Description
The loudnessMeter System object computes the loudness, loudness range, and true-
peak of an audio signal in accordance with EBU R 128 and ITU-R BS.1770-4 standards.

To implement loudness metering:

1 Create the loudnessMeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
loudMtr = loudnessMeter
loudMtr = loudnessMeter(Name,Value)

 loudnessMeter System object

3-129

Description

loudMtr = loudnessMeter creates a System object, loudMtr, that performs loudness
metering independently across each input channel.

loudMtr = loudnessMeter(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: loudMtr = loudnessMeter('ChannelWeights',[1.2,
0.8],'SampleRate',12000) creates a System object, loudMtr, with channel weights
of 1.2 and 0.8, and a sample rate of 12 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

ChannelWeights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative
values. The number of elements in the row vector must be equal to or greater than the
number of input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the input signal channels as a matrix in this order: [Left, Right,
Center, Left surround, Right surround].

As a best practice, specify the ChannelWeights property in order: [Left, Right, Center,
Left surround, Right surround].

Tunable: Yes
Data Types: single | double

3 System objects in Audio System Toolbox

3-130

UseRelativeScale — Use relative scale for loudness measurements
false (default) | true

Use relative scale for loudness measurements, specified as a logical scalar.

• false –– The loudness measurements are absolute and returned in loudness units
full scale (LUFS).

• true –– The loudness measurements are relative to the TargetLoudness value and
returned in loudness units (LU).

Tunable: No
Data Types: logical

TargetLoudness — Target loudness level for relative scale (LUFS)
-23 (default) | real scalar

Target loudness level for relative scale in LUFS, specified as a real scalar.

For example, if the TargetLoudness is –23 LUFS, then a loudness value of –23 LUFS is
reported as 0 LU.

Tunable: Yes
Dependencies

To enable this property, set UseRelativeScale to true.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

 loudnessMeter System object

3-131

Usage

Syntax
[momentary,shortTerm,
,range,peak] = loudMtr(audioIn)

Description
[momentary,shortTerm,integrated,range,peak] = loudMtr(audioIn) returns
measurement values for momentary and short-term loudness of the input to your
loudness meter, and the true-peak value of the current input frame, audioIn. It also
returns the integrated loudness and loudness range of the input to your loudness meter
since the last time reset was called.

Input Arguments
audioIn — Audio input to loudness meter
matrix

Audio input to the loudness meter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.

Note If you use the default ChannelWeights of the loudnessMeter, as a best practice,
specify the input channels in this order: [Left, Right, Center, Left surround, Right
surround].

Data Types: single | double

Output Arguments
momentary — Momentary loudness (LUFS)
column vector

Momentary loudness in loudness units relative to full scale (LUFS), returned as a
column vector with the same number of rows as audioIn.

3 System objects in Audio System Toolbox

3-132

By default, loudness measurements are returned in LUFS. If you set the
UseRelativeScale property to true, loudness measurements are returned in loudness
units (LU).
Data Types: single | double

shortTerm — Short-term loudness (LUFS)
column vector

Short-term loudness in loudness units relative to full scale (LUFS), returned as a column
vector with the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the
UseRelativeScale property to true, loudness measurements are returned in loudness
units (LU).
Data Types: single | double

integrated — Integrated loudness (LUFS)
column vector

Integrated loudness in loudness units relative to full scale (LUFS), returned as a column
vector with the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the
UseRelativeScale property to true, loudness measurements are returned in loudness
units (LU).
Data Types: single | double

range — Loudness rage (LU)
column vector

Loudness range in loudness units (LU), returned as a column vector with the same
number of rows as audioIn.
Data Types: single | double

peak — True-peak loudness (dB-TP)
scalar

True-peak loudness in dB-TP, returned as a column vector with the same number of rows
as audioIn.

 loudnessMeter System object

3-133

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to loudnessMeter
visualize Open 'EBU Mode' meter display

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Loudness of Audio Signal

Create a dsp.AudioFileReader System object™ to read in an audio file. Create a
loudnesMeter System object. Use the sample rate of the audio file as the sample rate of
the loudnessMeter.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
loudMtr = loudnessMeter('SampleRate',fileReader.SampleRate);

Read in the audio file in an audio stream loop. Use the loudness meter to determine the
momentary, short-term, and integrated loudness of the audio signal. Cache the loudness
measurements for analysis.

momentary = [];
shortTerm = [];

3 System objects in Audio System Toolbox

3-134

integrated = [];

while ~isDone(fileReader)
 x = fileReader();
 [m,s,i] = loudMtr(x);
 momentary = [momentary;m];
 shortTerm = [shortTerm;s];
 integrated = [integrated;i];
end

release(fileReader)

Plot the momentary, short-term, and integrated loudness of the audio signal.

t = linspace(0,11,length(momentary));
plot(t,[momentary,shortTerm,integrated])
title('Loudness Measurements')
legend('Momentary','Short-term','Integrated')
xlabel('Time (seconds)')
ylabel('LUFS')

 loudnessMeter System object

3-135

Plot Momentary Loudness and Loudness Range of Audio Stream

Create an audio file reader and an audio device writer.
fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3', ...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a time scope to visualize your audio stream loop.
timeScope = dsp.TimeScope('NumInputPorts',2, ...
 'SampleRate',fs, ...

3 System objects in Audio System Toolbox

3-136

 'TimeSpanOverrunAction','Scroll', ...
 'LayoutDimensions',[2,1], ...
 'TimeSpan',5, ...
 'BufferLength',5*fs);

% Top subplot of scope
timeScope.Title = 'Momentary Loudness';
timeScope.YLabel = 'LUFS';
timeScope.YLimits = [-40, 0];

% Bottom subplot of scope
timeScope.ActiveDisplay = 2;
timeScope.Title = 'Loudness Range';
timeScope.YLabel = 'LU';
timeScope.YLimits = [-1, 2];

Create a loudness meter. Use the sample rate of your input file as the sample rate of
your loudness meter. Call visualize to open an 'EBU-mode' visualization for your
loudness meter.

loudMtr = loudnessMeter('SampleRate',fs);
visualize(loudMtr)

In an audio stream loop:

• Read in your audio file.

 loudnessMeter System object

3-137

• Compute the momentary loudness and loudness range.
• Visualize the momentary loudness and loudness range on your time scope.
• Play the audio signal.

The 'EBU-mode' loudness meter visualization updates automatically while it is open. As
a best practice, release your file reader and device writer once the loop is completed.

while ~isDone(fileReader)
 audioIn = fileReader();
 [momentaryLoudness,~,~,LRA] = loudMtr(audioIn);
 timeScope(momentaryLoudness,LRA);
 deviceWriter(audioIn);
end

release(fileReader)
release(deviceWriter)

3 System objects in Audio System Toolbox

3-138

 loudnessMeter System object

3-139

Relative Scale for Loudness Measurements

Create an audio file reader to read in an audio file. Create an audio device writer to write
the audio file to your audio device. Use the sample rate of your file reader as the sample
rate of your device writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav',...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a loudness meter with the target loudness set to the default -23 LUFS. Open the
'EBU-mode' loudness meter visualization.

loudMtr = loudnessMeter('UseRelativeScale',true);
visualize(loudMtr)

3 System objects in Audio System Toolbox

3-140

Create a time scope to visualize your audio signal and its measured relative momentary
and short-term loudness.

scope = dsp.TimeScope(...
 'NumInputPorts',3, ...
 'SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',5, ...
 'BufferLength',5*fs, ...
 'Title','Audio Signal, Momentary Loudness, and Short-Term Loudness', ...
 'ChannelNames',{'Audio signal','Momentary loudness','Short-term loudness'}, ...
 'YLimits',[-16,16], ...
 'YLabel','Amplitude / LU', ...
 'ShowLegend',true);

In an audio stream loop, listen to and visualize the audio signal.

while ~isDone(fileReader)
 x = fileReader();
 [momentary,shortTerm] = loudMtr(x);
 scope(x,momentary,shortTerm)
 deviceWriter(x);
end

release(deviceWriter)
release(fileReader)

 loudnessMeter System object

3-141

3 System objects in Audio System Toolbox

3-142

Algorithms
The loudnessMeter System object calculates the momentary loudness, short-term
loudness, integrated loudness, loudness range (LRA), and true-peak value of an audio
signal. You can specify any number of channels and nondefault channel weights used for

 loudnessMeter System object

3-143

loudness measurements. The loudnessMeter algorithm is described for the general case
of n channels with default channel weights.

Loudness Measurements

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted
filter shapes the frequency spectrum to reflect perceived loudness.

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. If the required number of samples have not been collected yet, the
loudnessMeter System object returns the last computed values for momentary and
integrated loudness. If enough samples have been collected, then the power (mean
square) of each segment of the K-weighted channels is calculated:

mP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

3 System objects in Audio System Toolbox

3-144

2 The momentary loudness, mL, is computed in LUFS for each segment:

mL G mPi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your loudnessMeter System object. It
is also used internally to calculate the integrated loudness (steps 3–6).

3 The integrated loudness measurement considers the audio signal since the last reset
of your loudness meter. To calculate integrated loudness, the momentary power is
passed through a gating system. The gate system pauses the measurement during
periods of low sound, such as stretches of silence in a movie.

The momentary power segment is gated using the corresponding momentary
loudness segment calculation:
mP mPi jÆ

j i mLi= ≥ -{ }70

mPj is cached until your loudnessMeter is reset.
4 The momentary power subset, mPj, passes through a relative threshold gate.

a The relative threshold, Γ, is computed:

G = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

=
Â0 691 10 1010

1

. log G lc

c

n

c

 loudnessMeter System object

3-145

lc is the mean momentary power of channel c:

l
j

mPc j c
j

= ()Â
1

,

b The momentary power subset, mPj, is gated using relative threshold Γ:
mP mPj kÆ

k j mPj= ≥{ }G

The relative threshold is recomputed during each call to your loudnessMeter
object. The cached values of mPj are gated again depending on the updated value of
Γ.

5 The momentary power segments are averaged:

P
k

mPk

k

= Â
1

6 The integrated loudness is computed in LUFS by passing the mean momentary
power, P, through the Compute Loudness system:

Integrated Loudness = - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â0 691 10 10

1

. log G Pc c

c

n

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. If the required number of samples have not been collected yet, the
loudnessMeter System object returns the last computed values for short-term
loudness and loudness range. If enough samples have been collected, then the power
(mean square) of each K-weighted channel is calculated:

sP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed in LUFS for each segment:

3 System objects in Audio System Toolbox

3-146

sL G sPi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your loudnessMeter System object. It is
also used internally to calculate the loudness range (steps 3–5).

3 The short-term loudness is gated using an absolute threshold:
sL sLi jÆ

j i sLi= ≥ -{ }70

sLj is cached until your loudnessMeter is reset.
4 The short-term loudness subset, sLj passes through a relative threshold gate.

a The gated short-term loudness is converted back to linear and then the mean is
taken:

sP
j

j

sL

j

j

=
Ê
Ë
Á

ˆ
¯
˜

Â1
10

10

The relative threshold, K, is computed:
K sPj= - + ()20 10 10log

b The short-term loudness subset, sLj, is gated using the relative threshold:
sL sLj kÆ

 loudnessMeter System object

3-147

k j sL Kj= ≥{ }

The relative threshold, K, is recomputed during each call to your loudnessMeter
object. The cached values of sLj are gated again depending on the updated value of K.

5 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as
between the 10th and 95th percentiles of the distribution and is returned in loudness
units (LU).

True-Peak

The true-peak measurement considers only the current input frame of a call to your
loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input
sample rate determines the exact oversampling. An input sample rate below 750 Hz
is not considered.
Input Sample Rate (kHz) Upsample Factor
[0.75, 1.5) 256
[1.5, 3) 128
[3, 6) 64
[6,12) 32
[12, 24) 16
[24, 48) 8
[48, 96) 4
[96,192) 2
[192, ∞) Not required

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase
length of 12 and stopband attenuation of 80 dB. The filter design uses
designMultirateFIR.

3 System objects in Audio System Toolbox

3-148

3 The filtered signal, b, is rectified and converted to the dB TP scale:
c b= ¥ ()20 10log

4 The true-peak is determined as the maximum of the converted signal, c.

References

[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to
Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.
1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum
Level of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned off.

 loudnessMeter System object

3-149

See Also
System Objects
octaveFilter | weightingFilter

Blocks
Loudness Meter

Functions
integratedLoudness

Introduced in R2016b

3 System objects in Audio System Toolbox

3-150

visualize
Open 'EBU Mode' meter display

Syntax
visualize(loudMtr)

Description
visualize(loudMtr) opens an 'EBU Mode' loudness meter display. The values of
momentary loudness, short-term loudness, integrated loudness, loudness range, and
true-peak are updated as the simulation progresses. The display also shows the
maximum value of momentary and short-term loudness, and the time since the last call
to reset.

Examples

Open an 'EBU Mode' Loudness Meter Display

Create an object of the loudnessMeter System object™, and then call visualize to
open an 'EBU Mode' loudness meter display.

loudMtr = loudnessMeter;
visualize(loudMtr)

 visualize

3-151

Create an audio file reader System object and specify the audio file to analyze. Create an
audio device writer System object to play the audio to your output device.

fileReader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, read the audio from the file and play it to your device. The
loudness meter visualization updates at each call.

while ~isDone(fileReader)
 audioIn = fileReader();
 loudMtr(audioIn);
 deviceWriter(audioIn);
end

3 System objects in Audio System Toolbox

3-152

Input Arguments
loudMtr — Object of loudnessMeter
object

Object of the loudnessMeter System object.

See Also
Blocks
Loudness Meter

Functions
integratedLoudness

Introduced in R2016b

 visualize

3-153

multibandParametricEQ System object

Multiband parametric equalizer

Description
The multibandParametricEQ System object performs multiband parametric
equalization independently across each channel of input using specified center
frequencies, gains, and quality factors. You can configure the System object with up to 10
bands. You can add low-shelf and high-shelf filters, as well as highpass (low-cut) and
lowpass (high-cut) filters.

To implement a multiband parametric equalizer:

1 Create the multibandParametricEQ object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

3 System objects in Audio System Toolbox

3-154

Creation

Syntax
mPEQ = multibandParametricEQ
mPEQ = multibandParametricEQ(Name,Value)

Description

mPEQ = multibandParametricEQ creates a System object, mPEQ, that performs
multiband parametric equalization.

mPEQ = multibandParametricEQ(Name,Value) sets each construction argument or
property Name to the specified Value. Unspecified properties and creation arguments
have default values.
Example: mPEQ = multibandParametricEQ('NumEQBands',3,'Frequencies',
[300,1200,5000]) creates a multiband parametric equalizer System object, mPEQ, with
NumEQBands set to 3 and the Frequencies property set to [300,1200,5000].

Note The value specified by NumEQBands must be the length of the row vectors
specified by Frequencies, QualityFactors, and PeakGains. During creation of the System
object, the first property you specify locks the value.

Creation Arguments

Creation arguments are properties which are set during creation of the System object
and cannot be modified later. If you do not explicitly set a creation argument value, the
property takes a default value.

NumEQBands — Number of equalizer bands
3 (default) | integer in the range [1, 10]

Number of equalizer bands, specified as an integer in the range [1, 10]. The number of
equalizer bands does not include shelving filters, highpass filters, or lowpass filters.

 multibandParametricEQ System object

3-155

NumEQBands is set during creation of the System object and cannot be modified later. If
you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('NumEQBands',5) creates a multiband
parametric equalizer with 5 bands.
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | even integer

Order of individual equalizer bands, specified as an even integer. All equalizer bands
have the same order.

EQOrder is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('EQOrder',6) creates a multiband
parametric equalizer with the default 3 bands, all of order 6.
Data Types: single | double

HasLowShelfFilter — Low-shelf filter toggle
false (default) | true

Low-shelf filter toggle, specified as false or true.

• false –– Do not enable low-shelf filtering in multiband parametric equalizer
implementation.

• true –– Enable low-shelf filtering in multiband parametric equalizer
implementation.

HasLowShelfFilter is set during creation of the System object and cannot be modified
later. If you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowShelfFilter',true) creates
a default multiband parametric equalizer with low-shelf filtering enabled.
Data Types: logical

HasHighShelfFilter — High-shelf filter toggle
false (default) | true

High-shelf filter toggle, specified as false or true.

3 System objects in Audio System Toolbox

3-156

• false –– Do not enable high-shelf filtering in multiband parametric equalizer
implementation.

• true –– Enable high-shelf filtering in multiband parametric equalizer
implementation.

HasHighShelfFilter is set during creation of the System object and cannot be
modified later. If you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasHighShelfFilter',true) creates
a default multiband parametric equalizer with high-shelf filtering enabled.
Data Types: logical

HasLowpassFilter — Lowpass filter toggle
false (default) | true

Lowpass filter toggle, specified as false or true.

• false –– Do not enable lowpass filtering in multiband parametric equalizer
implementation.

• true –– Enable lowpass filtering in multiband parametric equalizer implementation.

HasLowpassFilter is set during creation of the System object and cannot be modified
later. If you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowpassFilter',true) creates a
default multiband parametric equalizer with lowpass filtering enabled.
Data Types: logical

HasHighpassFilter — Highpass filter toggle
false (default) | true

Highpass filter toggle, specified as false or true.

• false –– Do not enable highpass filtering in multiband parametric equalizer
implementation.

• true –– Enable highpass filtering in multiband parametric equalizer
implementation.

HasHighpassFilter is set during creation of the System object and cannot be modified
later. If you do not explicitly set its value, the property takes the default value.

 multibandParametricEQ System object

3-157

Example: mPEQ = multibandParametricEQ('HasHighpassFilter',true) creates
a default multiband parametric equalizer with highpass filtering enabled.
Data Types: logical

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false –– Runs the multiband parametric equalizer at the input sample rate.
• true –– Runs the multiband parametric equalizer at two times the input sample rate.

Oversampling minimizes the frequency-warping effects introduced by the bilinear
transformation.

A halfband interpolator implements oversampling before equalization. A halfband
decimator reduces the sample rate back to the input sampling rate after equalization.

Oversample is set during creation of the System object and cannot be modified later. If
you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('Oversample',true) creates a default
multiband parametric equalizer with oversampling enabled.
Data Types: logical

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Multiband Equalizer

Frequencies — Center frequencies of equalizer bands (Hz)
[100, 181, 325] (default) | row vector of length NumEQBands

3 System objects in Audio System Toolbox

3-158

Center frequencies of equalizer bands in Hz, specified as a row vector of length
NumEQBands. The vector consists of real scalars in the range 0 to SampleRate/2.

Tunable: Yes
Data Types: single | double

QualityFactors — Quality factors of equalizer bands
[1.6,1.6,1.6] (default) | row vector of length NumEQBands

Quality factors of equalizer bands, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range [0.2, 700]. Any values outside the range are
saturated.

Tunable: Yes
Data Types: single | double

PeakGains — Peak or dip filter gains (dB)
[0,0,0] (default) | row vector of length NumEQBands

Peak or dip filter gains in dB, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range [–inf, 20]. Values above 20 are saturated.

Tunable: Yes
Data Types: single | double
Low-Shelf Filter

LowShelfCutoff — Low-shelf filter cutoff (Hz)
200 (default) | scalar

Low-shelf filter cutoff in Hz, specified as a scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfSlope — Low-shelf filter slope coefficient
1.5 (default) | real scalar in the range [0.1, 5]

 multibandParametricEQ System object

3-159

Low-shelf filter slope coefficient, specified as a real scalar in the range [0.1, 5]. Values
outside the range are saturated.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfGain — Low-shelf filter gain (dB)
0 (default) | real scalar in the range [–12, 12]

Low-shelf filter gain in dB, specified as a real scalar in the range [–12, 12]. Values
outside the range are saturated.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double
High-Shelf Filter

HighShelfCutoff — High-shelf filter cutoff (Hz)
15000 (default) | nonnegative real scalar

High-shelf filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

HighShelfSlope — High-shelf slope coefficient
1.5 (default) | real scalar in the range [0.1, 5]

High-shelf filter slope coefficient, specified as a real scalar in the range [0.1, 5]. Values
outside the range are saturated.

3 System objects in Audio System Toolbox

3-160

Tunable: Yes
Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

HighShelfGain — High-shelf filter gain (dB)
0 (default) | real scalar in the range [–12, 12]

High-shelf filter gain in dB, specified as a real scalar in the range [–12, 12]. Values
outside the range are saturated.

Tunable: Yes
Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

Lowpass Filter

LowpassCutoff — Lowpass filter cutoff frequency (Hz)
18000 (default) | nonnegative real scalar

Lowpass filter cutoff frequency in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double

LowpassSlope — Lowpass filter slope (dB/octave)
12 (default) | real scalar in the range [0:6:48]

Lowpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes

 multibandParametricEQ System object

3-161

Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double
Highpass Filter

HighpassCutoff — Highpass filter cutoff frequency (Hz)
20 (default) | nonnegative real scalar

Highpass filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double

HighpassSlope — Highpass filter slope (dB/octave)
30 (default) | real scalar in the range [0:6:48]

Highpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes
Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double
Sampling

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

3 System objects in Audio System Toolbox

3-162

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = mPEQ(audioIn)

Description

audioOut = mPEQ(audioIn) performs multiband parametric equalization on the input
signal, audioIn, and returns the filtered signal, audioOut. The type of equalization is
specified by the algorithm and properties of the multibandParametricEQ System
object, mPEQ.

Input Arguments

audioIn — Audio input to equalizer
matrix

Audio input to the equalizer, specified as a matrix. The columns of the matrix are treated
as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from equalizer
matrix

Audio output from the equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

 multibandParametricEQ System object

3-163

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to multibandParametricEQ
createAudioPluginClass Create audio plugin class that implements functionality of

System object
visualize Visualize magnitude response of multiband parametric

equalizer

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the multibandParametricEQ System object to user-facing parameters:
Property Range Mapping Unit
Frequencies [20, 20000] log Hz
QualityFactors [0.2, 700] linear none
PeakGains [–50, 20] linear dB
LowShelfCutoff [20, 20000] log Hz
LowShelfSlope [0.1, 5] linear none

3 System objects in Audio System Toolbox

3-164

Property Range Mapping Unit
LowShelfGain [–12, 12] linear dB
HighShelfCutoff [20, 20000] log Hz
HighShelfSlope [0.1, 5] linear none
HighShelfGain [–12, 12] linear dB
LowpassCutoff [20, 20000] log Hz
LowpassSlope [0, 48] linear dB/octave
HighpassCutoff [20, 20000] log Hz
HighpassSlope [0, 48] linear dB/octave

Examples

Multiband Parametric Equalization

Create dsp.AudioFileReader and audioDeviceWriter System objects™. Use the
sample rate of the reader as the sample rate of the writer. Call setup to reduce the
computational load of initialization in an audio stream loop.

frameLength = 512;

fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-48-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,ones(frameLength,2));

Construct a three-band parametric equalizer with a high-shelf filter.

mPEQ = multibandParametricEQ(...
 'NumEQBands',3, ...
 'Frequencies',[300,1200,5000], ...
 'QualityFactors',[1,1,1], ...
 'PeakGains',[8,-10,7], ...
 'HasHighShelfFilter',true, ...
 'HighShelfCutoff',14000, ...

 multibandParametricEQ System object

3-165

 'HighShelfSlope',0.3, ...
 'HighShelfGain',-5, ...
 'SampleRate',fileReader.SampleRate);

Visualize the magnitude frequency response of your multiband parametric equalizer.

visualize(mPEQ)

Play the equalized audio signal. Update the peak gains of your equalizer band to hear the
effect of the equalizer and visualize the changing magnitude response.

count = 0;
while ~isDone(fileReader)
 originalSignal = fileReader();
 equalizedSignal = mPEQ(originalSignal);

3 System objects in Audio System Toolbox

3-166

 deviceWriter(equalizedSignal);
 if mod(count,100) == 0
 mPEQ.PeakGains(1) = mPEQ.PeakGains(1) - 1.5;
 mPEQ.PeakGains(2) = mPEQ.PeakGains(2) + 1.5;
 mPEQ.PeakGains(3) = mPEQ.PeakGains(3) - 1.5;
 end
 count = count + 1;
end

release(fileReader)
release(mPEQ)
release(deviceWriter)

 multibandParametricEQ System object

3-167

Oversample Audio Signal

Reduce warping by specifying your multibandParametricEQ System object™ to
perform oversampling before equalization.

Create a one-band equalizer. Visualize the equalizer band as its center frequency
approaches the Nyquist rate.

mPEQ = multibandParametricEQ(...
 'NumEQBands',1,...
 'Frequencies',9.5e3,...
 'PeakGains',10);
visualize(mPEQ)
for i = 1:1000
 mPEQ.Frequencies = mPEQ.Frequencies + 8;
end

3 System objects in Audio System Toolbox

3-168

The equalizer band is warped.

Create a one-band equalizer with Oversample set to true. Visualize the equalizer band
as its center frequency approaches the Nyquist rate.

mPEQOversampled = multibandParametricEQ(...
 'NumEQBands',1,...
 'Frequencies',9.5e3,...
 'PeakGains',10,...
 'Oversample',true);
visualize(mPEQOversampled)
for i = 1:1000
 mPEQOversampled.Frequencies = mPEQOversampled.Frequencies + 8;
end

 multibandParametricEQ System object

3-169

Warping is reduced.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3 System objects in Audio System Toolbox

3-170

See Also
Blocks
Parametric EQ Filter

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

 multibandParametricEQ System object

3-171

visualize
Visualize magnitude response of multiband parametric equalizer

Syntax
visualize(mPEQ)
visualize(obj,NFFT)

Description
visualize(mPEQ) plots the magnitude response of the multibandParametricEQ
object, mPEQ. The plot is updated automatically when properties of the object change.

visualize(obj,NFFT) specifies an N-point FFT used to calculate the magnitude
response.

Examples

Specify a Nondefault Number of FFT Points

Create an object of the multibandParametricEQ System object™, and then call
visualize to plot the magnitude response using a 5096-point FFT.

mPEQ = multibandParametricEQ('PeakGains',[-inf,5,5]);
visualize(mPEQ,5096)

3 System objects in Audio System Toolbox

3-172

Input Arguments
obj — Multiband parametric equalizer to visualize
object of multibandParametricEQ System object

Multiband parametric equalizer whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

 visualize

3-173

See Also
System Objects
multibandParametricEQ

Introduced in R2016a

3 System objects in Audio System Toolbox

3-174

compressor System object

Dynamic range compressor

Description
The compressor System object performs dynamic range compression independently
across each input channel. Dynamic range compression attenuates the volume of loud
sounds that cross a given threshold. It uses specified attack and release times to achieve
a smooth applied gain curve. Properties of the compressor System object specify the
type of dynamic range compression.

To perform dynamic range compression:

1 Create the compressor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

 compressor System object

3-175

Creation

Syntax
dRC = compressor
dRC = compressor(thresholdValue)
dRC = compressor(thresholdValue,ratioValue)
dRC = compressor(___ ,Name,Value)

Description

dRC = compressor creates a System object, dRC, that performs dynamic range
compression independently across each input channel over time.

dRC = compressor(thresholdValue) sets the Threshold property to
thresholdValue.

dRC = compressor(thresholdValue,ratioValue) sets the Ratio property to
ratioValue.

dRC = compressor(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: dRC = compressor('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRC, with a 10 ms attack time operating at a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

3 System objects in Audio System Toolbox

3-176

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Compression ratio
5 (default) | real scalar

Compression ratio, specified as a real scalar greater than or equal to 1.

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >

Threshold, the compression ratio is defined as
R

x n T

y n T
=

-

-

([])

([]) .

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the compression characteristic.

For soft knee characteristics, the transition area is defined by the relation

 compressor System object

3-177

y x
R

x T
W

W
= +

-Ê
ËÁ

ˆ
¯̃

¥ - +Ê
ËÁ

ˆ
¯̃

¥()

1
1

2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its final
value when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the compressor gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

3 System objects in Audio System Toolbox

3-178

MakeUpGainMode — Make-up gain mode
'Auto' (default) | 'Property'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range compressor
such that a steady-state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain
property.

Tunable: No
Data Types: char

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during compression. It is applied at the output of
the dynamic range compressor.

Tunable: Yes
Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

 compressor System object

3-179

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRC(audioIn)
[audioOut,gain] = dRC(audioIn)

Description

audioOut = dRC(audioIn) performs dynamic range compression on the input signal,
audioIn, and returns the compressed signal, audioOut. The type of dynamic range
compression is specified by the algorithm and properties of the compressor System
object, dRC.

[audioOut,gain] = dRC(audioIn) also returns the applied gain, in dB, at each input
sample.

Input Arguments
audioIn — Audio input to compressor
matrix

Audio input to the compressor, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from compressor
matrix

3 System objects in Audio System Toolbox

3-180

Audio output from the compressor, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by compressor (dB)
matrix

Gain applied by compressor, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to compressor
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of

System object

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the compressor System object to user-facing parameters:

 compressor System object

3-181

Property Range Mapping Unit
Threshold [–50, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
MakeUpGain
(available when you
set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

Examples

Compress Audio Signal

Use dynamic range compression to attenuate the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the compressor to have a threshold of -15 dB, a ratio of 7, and a knee width of 5
dB. Use the sample rate of your audio file reader.

dRC = compressor(-15,7,...
 'KneeWidth',5,...
 'SampleRate',fileReader.SampleRate);

Visualize the compression static characteristic.

visualize(dRC)

3 System objects in Audio System Toolbox

3-182

Set up the scope to visualize the original audio signal, the compressed audio signal, and
the applied compressor gain.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',44100*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title', ...
 ['Original vs. Compressed Audio (top)' ...

 compressor System object

3-183

 ' and Compressor Gain in dB (bottom)']);
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRC(x);
 deviceWriter(y);
 scope([x(:,1),y(:,1)],g(:,1))
end

release(dRC)
release(deviceWriter)
release(scope)

3 System objects in Audio System Toolbox

3-184

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the
level above an operational threshold is hard limited. In the simplest implementation of a
limiter, the effect is equivalent to audio clipping. In compressors, the level above an

 compressor System object

3-185

operational threshold is lowered using a specified compression ratio. Using a
compression ratio results in a smoother processed signal.

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the
AttackTime and ReleaseTime properties of both objects to zero. Create an
audioOscillator System object to generate a sinusoid with Frequency set to 5 and
Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',osc.SampleRate*4, ...
 'YLimits',[-1 1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2, ...
 'Title', ...
 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a
limiter and a compressor. Increment the amplitude of the original sinusoid to illustrate
the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)

3 System objects in Audio System Toolbox

3-186

release(dRL)
release(dRC)
release(osc)

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to

 compressor System object

3-187

read audio from a file and write to your audio output device. To emphasize the effect of
dynamic range control, set the operational threshold of the limiter and compressor to -20
dB.

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of
dynamic range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')
for i = 1:numFrames
 x = fileReader();
 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')
for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')
for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)
release(dRC)
release(dRL)

3 System objects in Audio System Toolbox

3-188

Now playing original signal...
Now playing limited signal...
Now playing compressed signal...

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in words beginning with p, d, and g sounds. Plosives can be emphasized by
the recording process and are often displeasurable to hear. In this example, you minimize
the plosives of a speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and a audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Play the
unprocessed signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Plosives.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
'Property' and use the default 0 dB MakeUpGain property value. Create a time scope
to visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');
biquadFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...

 compressor System object

3-189

 'CrossoverFrequencies',250, ...
 'CrossoverSlopes',48);

dRCompressor = compressor(...
 'Threshold',-35, ...
 'Ratio',10, ...
 'KneeWidth',20, ...
 'AttackTime',1e-4, ...
 'ReleaseTime',3e-1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',3, ...
 'BufferLength',fileReader.SampleRate*3*2, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

3 System objects in Audio System Toolbox

3-190

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRCompressor)

 compressor System object

3-191

Algorithms
The compressor System object processes a signal frame by frame and element by
element.

3 System objects in Audio System Toolbox

3-192

Convert Input Signal to dB
The N-point signal, x[n], is converted to decibels:
x n x ndB[] log []= ¥20 10

Gain Computer
xdB[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range compressor to attenuate gain that is above the
threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

x x T
W

x
R

x T
W

W
Tsc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

+
-Ê

Ë
Á

ˆ
¯
˜ - +Ê
Ë
Á

ˆ
¯
˜

2

1
1

2

2

2

--Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

+
-()

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô

W
x T

W

T
x T

R
x T

W

2 2

2

dB

dB
dB

ÔÔ
Ô
Ô
Ô

,

where T is the threshold, R is the ratio, and W is the knee width.

 compressor System object

3-193

If you specified a hard knee, the gain computer has the following static characteristic:

x x

x x T

T
x T

R
x T

sc dB

dB dB

dB
dB

() =

<

+
-()

≥

Ï

Ì
Ô

Ó
Ô

The computed gain, gc[n], is calculated as
g n x n x nc sc dB[] [] [].= -

Gain Smoothing

gc[n] is smoothed using specified attack and release time properties:

g n
g n g n g n g n

g n g
s

A s A c c s

R s R

[]
[] () [], [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1 cc c s[], [] []n g n g n£ -

Ï
Ì
Ó 1

The attack time coefficient, αA , is calculated as

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, αR , is calculated as

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

Calculate and Apply Make-up Gain

If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the
negative of the computed gain for a 0 dB input,
M x

x
= -

=sc
dB

0
.

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0
dB. The make-up gain is determined by the Threshold, Ratio, and KneeWidth
properties. It does not depend on the input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:

3 System objects in Audio System Toolbox

3-194

g n g n Mm s[] []= +

Calculate and Apply Linear Gain

The calculated gain in dB, gm[n], is translated to a linear domain:

g n

g n

lin

m

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

The output of the dynamic range compressor is given as
y n x n g n[] [] [].= ¥ lin

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic
Range Compressor Design –– A Tutorial and Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Compressor

System Objects
expander | limiter | noiseGate

 compressor System object

3-195

Topics
“Dynamic Range Control”

Introduced in R2016a

3 System objects in Audio System Toolbox

3-196

expander System object

Dynamic range expander

Description
The expander System object performs dynamic range expansion independently across
each input channel. Dynamic range expansion attenuates the volume of quiet sounds
below a given threshold. It uses specified attack, release, and hold times to achieve a
smooth applied gain curve. Properties of the expander System object specify the type of
dynamic range expansion.

To perform dynamic range expansion:

1 Create the expander object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

 expander System object

3-197

Creation

Syntax
dRE = expander
dRE = expander(thresholdValue)
dRE = expander(thresholdValue,ratioValue)
dRE = expander(___ ,Name,Value)

Description
dRE = expander creates a System object, dRE, that performs dynamic range expansion
independently across each input channel.

dRE = expander(thresholdValue) sets the Threshold property to thresholdValue.

dRE = expander(thresholdValue,ratioValue) sets the Ratio property to
ratioValue.

dRE = expander(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRE = expander('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRE, with a 0.01 second attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

3 System objects in Audio System Toolbox

3-198

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Expansion ratio
5 (default) | real scalar

Expansion ratio, specified as a real scalar greater than or equal to 1.

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <

thresholdValue, the expansion ratio is defined as
R

y n T

x n T
=

-

-

([])

([]) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the expansion characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x

R x T
W

W
= +

- ¥ - -Ê
ËÁ

ˆ
¯̃

¥()

()1
2

2

2

 expander System object

3-199

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final
value when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the expander gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

3 System objects in Audio System Toolbox

3-200

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRE(audioIn)
[audioOut,gain] = dRE(audioIn)

Description

audioOut = dRE(audioIn) performs dynamic range expansion on the input signal,
audioIn, and returns the expanded signal, audioOut. The type of dynamic range
expansion is specified by the algorithm and properties of the expander System object,
dRE.

 expander System object

3-201

[audioOut,gain] = dRE(audioIn) also returns the applied gain, in dB, at each input
sample.

Input Arguments

audioIn — Audio input to expander
matrix

Audio input to the expander, specified as a matrix. The columns of the matrix are treated
as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from expander
matrix

Audio output from the expander, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by expander (dB)
matrix

Gain applied by expander, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to expander
visualize Visualize static characteristic of dynamic range controller

3 System objects in Audio System Toolbox

3-202

createAudioPluginClass Create audio plugin class that implements functionality of
System object

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the expander System object to user-facing parameters:
Property Range Mapping Unit
Threshold [–140, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

Examples

Expand Audio Signal

Use dynamic range expansion to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects.

 expander System object

3-203

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 deviceWriter(xCorrupted);
end

release(fileReader)

Set up the expander with a threshold of -40 dB, a ratio of 10, an attack time of 0.01
seconds, a release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate
of your audio file reader.

dRE = expander(-40,10, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Visualize the expansion static characteristic.

visualize(dRE)

3 System objects in Audio System Toolbox

3-204

Set up the scope to visualize the signal before and after dynamic range expansion.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Expanded Audio');

Play the processed audio and visualize it on the scope.

 expander System object

3-205

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 y = dRE(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y])
end

release(fileReader)
release(dRE)
release(deviceWriter)
release(scope)

3 System objects in Audio System Toolbox

3-206

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance
refers to the s, z, and sh sounds in speech, which can be disproportionately emphasized
during recording. es sounds fall under the category of unvoiced speech with all

 expander System object

3-207

consonants and have a higher frequency than voiced speech. In this example, you apply
split-band de-essing to a speech signal by separating the signal into high and low
frequencies, applying an expander to diminish the sibilant frequencies, and then
remixing the channels.

Create a dsp.AudioFileReader System object™ and an audioDeviceWriter System
object to read from a sound file and write to an audio device. Listen to the unprocessed
signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Sibilance.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the
expander to the sample rate of the audio file. Create a two-band crossover filter with a
crossover of 3000 Hz. Sibilance is usually found in this range. Set the crossover slope to
12. Plot the frequency response of the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...
 'AttackTime', 0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

3 System objects in Audio System Toolbox

3-208

Create a dsp.TimeScope System object to visualize the original and processed audio
signals.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',4, ...
 'BufferLength',44100*8, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

 expander System object

3-209

1 Read in a frame of the audio file.
2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRExpander)

3 System objects in Audio System Toolbox

3-210

Algorithms
The expander System object processes a signal frame by frame and element by element.

 expander System object

3-211

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:
x n x ndB[] log []= ¥20 10

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range expander to attenuate gain that is below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

T x T R x T
W

x

R x T
W

sc dB

dB dB

dB

dB

() =

+ -()¥ < -Ê
ËÁ

ˆ
¯̃

+
-() - -Ê

Ë
Á

ˆ
¯
˜

2

1
2

2

22 2 2

2

W
T

W
x T

W

x x T
W

-Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

> +Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

dB

dB dB

,,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

3 System objects in Audio System Toolbox

3-212

x x
T x T R x T

x x T
sc dB

dB dB

dB dB

() =
+ -()¥ <

≥

Ï
Ì
Ô

ÓÔ

The computed gain, gc[n], is calculated as
g n x n x nc sc dB[] [] [].= -

Gain Smoothing

gc[n] is smoothed using specified attack, release, and hold time properties:

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

C T g n g n

C T

C T g n g n

-

Ï

Ì

Ô
Ô

Ó

Ô
Ô

>() > -()
£

>() £

1

1

]

& [] []

& [] [

A H c s

A H

R H c s --()
£

1]

C TR H

The attack time coefficient, αA , is calculated as

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, αR , is calculated as

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is
determined by the HoldTime property.

Calculate and Apply Linear Gain

The smoothed gain in dB, gs[n], is translated to a linear domain:

g n

g n

lin

s

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

The output of the dynamic range expander is given as

 expander System object

3-213

y n x n g n[] [] [].= ¥ lin

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic
Range Compressor Design –– A Tutorial and Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Expander

System Objects
compressor | limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

3 System objects in Audio System Toolbox

3-214

limiter System object

Dynamic range limiter

Description
The limiter System object performs brick-wall dynamic range limiting independently
across each input channel. Dynamic range limiting suppresses the volume of loud sounds
that cross a given threshold. It uses specified attack and release times to achieve a
smooth applied gain curve. Properties of the limiter System object specify the type of
dynamic range limiting.

To perform dynamic range limiting:

1 Create the limiter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

 limiter System object

3-215

Creation

Syntax
dRL = limiter
dRL = limiter(thresholdValue)
dRL = limiter(___ ,Name,Value)

Description

dRL = limiter creates a System object, dRL, that performs brick-wall dynamic range
limiting independently across each input channel.

dRL = limiter(thresholdValue) sets the Threshold property to thresholdValue.

dRL = limiter(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRL = limiter('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRL, with a 10 ms attack time and a sample rate of 16 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

3 System objects in Audio System Toolbox

3-216

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the limiter characteristic.

For soft knee characteristics, the transition area is defined by the relation

y x

x T
W

W
= -

- +Ê
ËÁ

ˆ
¯̃

¥()
2

2

2

for the range 2 ¥ -() £x T W .

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final value
when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

 limiter System object

3-217

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

MakeUpGainMode — Make-up gain mode
'Auto' (default) | 'Property'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range limiter such
that a steady-state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain
property.

Tunable: No
Data Types: char

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during limiting. It is applied at the output of the
dynamic range limiter.

Tunable: Yes
Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

3 System objects in Audio System Toolbox

3-218

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRL(audioIn)
[audioOut,gain] = dRL(audioIn)

Description

audioOut = dRL(audioIn)performs dynamic range limiting on the input signal,
audioIn, and returns the limited signal, audioOut. The type of dynamic range limiting
is specified by the algorithm and properties of the limiter System object, dRL.

[audioOut,gain] = dRL(audioIn)also returns the applied gain, in dB, at each input
sample.

Input Arguments

audioIn — Audio input to limiter
matrix

Audio input to the limiter, specified as a matrix. The columns of the matrix are treated
as independent audio channels.
Data Types: single | double

 limiter System object

3-219

Output Arguments

audioOut — Audio output from limiter
matrix

Audio output from the limiter, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by limiter (dB)
matrix

Gain applied by the limiter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to limiter
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of

System object

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked

3 System objects in Audio System Toolbox

3-220

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the limiter System object to user-facing parameters:
Property Range Mapping Unit
Threshold [–50, 0] linear dB
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
MakeUpGain
(available when you
set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

Examples

Limit Audio Signal

Use dynamic range limiting to suppress the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the limiter to have a threshold of -15 dB, an attack time of 0.005 seconds, and a
release time of 0.1 seconds. Set make-up gain to 0 dB (default). To specify this value, set
the make-up gain mode to 'Property' but do not specify the MakeUpGain property. Use
the sample rate of your audio file reader.

 limiter System object

3-221

dRL = limiter(-15, ...
 'AttackTime',0.005, ...
 'ReleaseTime',0.1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the limiter.

visualize(dRL)

Set up a time scope to visualize the original signal and the limited signal.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...

3 System objects in Audio System Toolbox

3-222

 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',1, ...
 'BufferLength',44100*4, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'ShowLegend',true, ...
 'Title',['Original vs. Limited Audio (top)' ...
 ' and Limiter Gain in dB (bottom)']);

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRL(x);
 deviceWriter(y);
 x1 = x(:,1);
 y1 = y(:,1);
 g1 = g(:,1);
 scope([x1,y1],g1);
end

release(fileReader)
release(dRL)
release(deviceWriter)
release(scope)

 limiter System object

3-223

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the
level above an operational threshold is hard limited. In the simplest implementation of a
limiter, the effect is equivalent to audio clipping. In compressors, the level above an

3 System objects in Audio System Toolbox

3-224

operational threshold is lowered using a specified compression ratio. Using a
compression ratio results in a smoother processed signal.

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the
AttackTime and ReleaseTime properties of both objects to zero. Create an
audioOscillator System object to generate a sinusoid with Frequency set to 5 and
Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',osc.SampleRate*4, ...
 'YLimits',[-1 1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2, ...
 'Title', ...
 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a
limiter and a compressor. Increment the amplitude of the original sinusoid to illustrate
the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)

 limiter System object

3-225

release(dRL)
release(dRC)
release(osc)

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to

3 System objects in Audio System Toolbox

3-226

read audio from a file and write to your audio output device. To emphasize the effect of
dynamic range control, set the operational threshold of the limiter and compressor to -20
dB.

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of
dynamic range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')
for i = 1:numFrames
 x = fileReader();
 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')
for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')
for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)
release(dRC)
release(dRL)

 limiter System object

3-227

Now playing original signal...
Now playing limited signal...
Now playing compressed signal...

Algorithms
The limiter System object processes a signal frame by frame and element by element.

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:
x n x ndB[] log []= ¥20 10

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range limiter to brick-wall gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

3 System objects in Audio System Toolbox

3-228

x x

x x T
W

x

x T
W

W
T

W
sc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

-
- +Ê

Ë
Á

ˆ
¯
˜

-Ê
ËÁ

ˆ
¯̃

£

2

2

2 2

2

xx T
W

T x T
W

dB

dB

£ +Ê
ËÁ

ˆ
¯̃

> +Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

2

2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

x x
x x T

T x T
sc dB

dB dB

dB

() =
<

≥

Ï
Ì
Ó

The computed gain, gc[n], is calculated as
g n x n x nc sc dB[] [] [].= -

Gain Smoothing

gc[n] is smoothed using specified attack and release time:

g n
g n g n g n g n

g n g
s

A s A c c s

R s R

[]
[] () [], [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1 cc c s[], [] []n g n g n£ -

Ï
Ì
Ó 1

The attack time coefficient, αA , is calculated as

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, αR , is calculated as

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

 limiter System object

3-229

Calculate and Apply Make-up Gain

If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the
negative of the computed gain for a 0 dB input:
M x

x
= -

=sc
dB

0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0
dB. The make-up gain is determined by the Threshold and KneeWidth properties. It
does not depend on the input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:
g n g n Mm s[] []= +

Calculate and Apply Linear Gain

The calculated gain in dB, gm[n], is translated to a linear domain:

g n

g n

lin

m

[] .

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

The output of the dynamic range limiter is given as
y n x n g n[] [] [].= ¥ lin

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic
Range Compressor Design –– A Tutorial and Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

3 System objects in Audio System Toolbox

3-230

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Limiter

System Objects
compressor | expander | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

 limiter System object

3-231

noiseGate System object

Dynamic range gate

Description
The noiseGate System object performs dynamic range gating independently across each
input channel. Dynamic range gating suppresses signals below a given threshold. It uses
specified attack, release, and hold times to achieve a smooth applied gain curve.
Properties of the noiseGate System object specify the type of dynamic range gating.

To perform dynamic range gating:

1 Create the noiseGate object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

3 System objects in Audio System Toolbox

3-232

Creation

Syntax
dRG = noiseGate
dRG = noiseGate(thresholdValue)
dRG = noiseGate(___ ,Name,Value)

Description

dRG = noiseGate creates a System object, dRG, that performs dynamic range gating
independently across each input channel.

dRG = noiseGate(thresholdValue) sets the Threshold property to
thresholdValue.

dRG = noiseGate(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRG = noiseGate('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRG, with a 10 ms attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

 noiseGate System object

3-233

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final value
when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.02 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the applied gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real finite scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

Tunable: Yes
Data Types: single | double

3 System objects in Audio System Toolbox

3-234

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRG(audioIn)
[audioOut,gain] = dRG(audioIn)

Description

audioOut = dRG(audioIn) performs dynamic range gating on the input signal,
audioIn, and returns the gated signal, audioOut. The type of dynamic range gating is
specified by the algorithm and properties of the noiseGate System object, dRG.

[audioOut,gain] = dRG(audioIn) also returns the applied gain, in dB, at each input
sample.

Input Arguments

audioIn — Audio input to noise gate
matrix

 noiseGate System object

3-235

Audio input to the noise gate, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from noise gate
matrix

Audio output from the noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by noise gate (dB)
matrix

Gain applied by noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to noiseGate
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of

System object

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

3 System objects in Audio System Toolbox

3-236

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the noiseGate System object to user-facing parameters:
Property Range Mapping Unit
Threshold [–140, 0] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

Examples

Gate Audio Signal

Use dynamic range gating to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 deviceWriter(xCorrupted);
end

 noiseGate System object

3-237

release(fileReader)

Set up a dynamic range gate with a threshold of -25 dB, an attack time of 0.01 seconds, a
release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your
audio file reader.

gate = noiseGate(-25, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the gate.

visualize(gate)

3 System objects in Audio System Toolbox

3-238

Set up a time scope to visualize the signal before and after dynamic range gating.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Gated Audio');

Play the processed audio and visualize it on scope.

 noiseGate System object

3-239

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 y = gate(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y]);
end

release(fileReader)
release(gate)
release(deviceWriter)
release(scope)

3 System objects in Audio System Toolbox

3-240

Algorithms
The noiseGate System object processes a signal frame by frame and element by
element.

 noiseGate System object

3-241

Convert Input Signal to Magnitude

The N-point signal, x[n], is converted to magnitude:
x n x na[] [] .=

Gain Computer

xa[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range gate to determine a brick-wall gain for signal below the
threshold:

g x
x T

x Tc a
a lin

a lin

() .=
<

≥

Ï
Ì
Ó

0

1

Tlin is the threshold property converted to a linear domain:

T

T

lin

dB

=
Ê
Ë
Á ˆ

¯
˜

10
20

.

Gain Smoothing

The computed gain, gc[n], is smoothed using specified attack, release, and hold time
properties:

3 System objects in Audio System Toolbox

3-242

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

C T g n g n

C T

C T g n g n

-

Ï

Ì

Ô
Ô

Ó

Ô
Ô

>() > -()
£

>() £

1

1

]

& [] []

& [] [

A H c s

A H

R H c s --()
£

1]

C TR H

The attack time coefficient, αA , is calculated as

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, αR , is calculated as

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

TA is the attack time period, specified by the AttackTime property. TR is the release
time period, specified by the ReleaseTime property. Fs is the input sampling rate,
specified by the SampleRate property.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is
determined by the HoldTime property.

Apply Gain
The output of the dynamic range gate is given as
y n x n g n[] [] [].= ¥ s

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic

Range Compressor Design –– A Tutorial and Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 noiseGate System object

3-243

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Noise Gate

System Objects
compressor | expander | limiter

Topics
“Dynamic Range Control”

Introduced in R2016a

3 System objects in Audio System Toolbox

3-244

octaveFilter System object

Octave-band and fractional octave-band filter

Description
The octaveFilter System object performs octave-band or fractional octave-band
filtering independently across each input channel. An octave-band is a frequency band
where the highest frequency is twice the lowest frequency. Octave-band and fractional
octave-band filters are commonly used to mimic how humans perceive loudness. Octave
filters are best understood when viewed on a logarithmic scale, which models how the
human ear weights the spectrum.

To perform octave-band or fractional octave-band filtering on your input:

1 Create the octaveFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

 octaveFilter System object

3-245

Creation

Syntax
octFilt = octaveFilter
octFilt = octaveFilter(centerFreq)
octFilt = octaveFilter(centerFreq,bw)
octFilt = octaveFilter(___ ,Name,Value)

Description

octFilt = octaveFilter creates a System object, octFilt, that performs octave-
band filtering independently across each input channel.

octFilt = octaveFilter(centerFreq) sets the CenterFrequency property to
centerFreq.

octFilt = octaveFilter(centerFreq,bw) sets the Bandwidth property to bw.

octFilt = octaveFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: octFilt = octaveFilter(1000,'1/3 octave','SampleRate',96000)
creates a System object, octFilt, with a center frequency of 1000 Hz, a 1/3 octave filter
bandwidth, and a sample rate of 96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

3 System objects in Audio System Toolbox

3-246

FilterOrder — Order of octave filter
6 (default) | even integer

Order of the octave filter, specified as an even integer.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

CenterFrequency — Center frequency of octave filter (Hz)
1000 (default) | positive scalar

Center frequency of the octave filter in Hz, specified as a positive scalar.

• The maximum center frequency is the value that causes the upper band edge to be
equal to the Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be
equal to 1 Hz. Frequencies below this value are quantized to the value that
corresponds to lower band edge equal to 1 Hz.

Tunable: Yes
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6
octave' | '1/12 octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave',
'1/3 octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48
octave'.

Tunable: Yes
Data Types: char

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

 octaveFilter System object

3-247

• false –– The octave filter runs at the input sample rate.
• true –– The octave filter runs at two times the input sample rate. Oversampling

minimizes the frequency warping effects introduced by the bilinear transformation.
An FIR halfband interpolator implements oversampling before octave filtering. A
halfband decimator reduces the sample rate back to the input sampling rate after
octave filtering.

Tunable: No
Data Types: logical

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = octFilt(audioIn)

Description

audioOut = octFilt(audioIn) applies octave-band filtering to the input signal,
audioIn, and returns the filtered signal, audioOut. The type of filtering is specified by
the algorithm and properties of the octaveFilter System object, octFilt.

Input Arguments

audioIn — Audio input to octave filter
matrix

3 System objects in Audio System Toolbox

3-248

Audio input to the octave filter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from octave filter
matrix

Audio output from the octave filter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to octaveFilter
createAudioPluginClass Create audio plugin class that implements functionality of

System object
visualize Visualize and validate filter response
isStandardCompliant Verify octave filter design is ANSI S1.11-2004 compliant
getFilter Return biquad filter object with design parameters set
getANSICenterFrequencies Get the list of valid ANSI S1.11-2004 center frequencies

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object

 octaveFilter System object

3-249

isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the octaveFilter System object to user-facing parameters:
Property Range Mapping Units
CenterFrequency [3, 22000] log Hz
Bandwidth '1 octave', '2/3

octave', '1/2
octave', '1/3
octave', '1/6
octave', '1/12
octave', '1/24
octave', or '1/48
octave'

Your MIDI controller
range is discretized
into seven levels,
corresponding to the
seven Bandwidth
choices.

––

Examples

Perform Fractional Octave-Band Filtering

Use the octaveFilter System object™ to design a 1/3 octave-band filter centered at
1000 Hz. Process an audio signal using your octave filter design.

Create a dsp.AudioFileReader System object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader('Filename', ...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame, ...
 'PlayCount',Inf);

Create an octaveFilter System object. Use the sample rate of the reader as the sample
rate of the octave filter.
centerFreq = 1000;
bw = '1/3 octave';

3 System objects in Audio System Toolbox

3-250

Fs = reader.SampleRate;

octFilt = octaveFilter(centerFreq,bw,'SampleRate',Fs);

Visualize the filter response and verify that it fits within the class 0 mask of the ANSI
S1.11-2004 standard.

visualize(octFilt,'class 0')

Create a spectrum analyzer to visualize the original audio signal and the audio signal
after octave-band filtering.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',Fs, ...
 'PlotAsTwoSidedSpectrum',false, ...

 octaveFilter System object

3-251

 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title','Octave-Band Filtering', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the
original audio. As a best practice, release the System objects when complete.

tic;
while toc < 20
 x = reader();
 y = octFilt(x);
 scope([x(:,1),y(:,1)])
end

release(octFilt)
release(scope)
release(reader)

3 System objects in Audio System Toolbox

3-252

Create Octave-Band Filter Bank

Create an octave-band filter bank that conforms to ANSI S1.11-2004. Pass white noise
through the filter bank and inspect the resulting power in each band.

Create an octave filter with default settings. Visualize the filter design and verify that it
conforms to ANSI S1.11-2004 for class 0.

octFilt = octaveFilter;
visualize(octFilt,'class 0')

 octaveFilter System object

3-253

Get a vector of valid center frequencies, given the center frequency of octFilt. Create
an octave filter bank using the valid center frequencies.
centerFrequencies = getANSICenterFrequencies(octFilt);
for i = 1:11
 octaveFilterBank{i} = octaveFilter(centerFrequencies(i),'FilterOrder',12);
end

Use getFilter to return biquad filter objects for each filter in your octave filter bank.
Visualize the octave filter bank with a linear frequency scale.
plotter = fvtool(getFilter(octaveFilterBank{1}), ...
 getFilter(octaveFilterBank{2}), ...
 getFilter(octaveFilterBank{3}), ...
 getFilter(octaveFilterBank{4}), ...

3 System objects in Audio System Toolbox

3-254

 getFilter(octaveFilterBank{5}), ...
 getFilter(octaveFilterBank{6}), ...
 getFilter(octaveFilterBank{7}), ...
 getFilter(octaveFilterBank{8}), ...
 getFilter(octaveFilterBank{9}), ...
 getFilter(octaveFilterBank{10}), ...
 getFilter(octaveFilterBank{11}), ...
 'Fs',octaveFilterBank{1}.SampleRate);

Visualize the octave filter bank with a logarithmic frequency scale. The logarithmic
frequency scale makes the center frequencies appear evenly distributed.

set(plotter,'FrequencyScale','Log')

 octaveFilter System object

3-255

Create a white noise signal. By definition, white noise has a flat power spectral density.
whiteNoiseGenerator = dsp.ColoredNoise(0,1024);
whiteNoise = whiteNoiseGenerator();

Pass the white noise signal through the octave-band filter bank.
for i = 1:11
 filteredWhiteNoise(:,i) = octaveFilterBank{i}(whiteNoise);
end

Calculate and plot the power in each octave.
for i = 1:11
 powerPerBand(i) = bandpower(filteredWhiteNoise(:,i));

3 System objects in Audio System Toolbox

3-256

end

bar(powerPerBand)
title('Power Distribution of Octave Band Filter Bank')
set(gca,'XTickLabel',{round(centerFrequencies)})
xlabel('Center Frequency of Octave Band Filter (Hz)')
ylabel('Normalized Power')

The bandpower increases by a factor of approximately two because the octave bandwidth
increases by a factor of two. The power distribution of an octave filter bank mimics how
higher frequencies are percieved louder in white noise. You can use octave filter banks to
weight a spectrum for percieved loudness.

 octaveFilter System object

3-257

Effect of Center Frequency on Octave-Band Filtering

Process a speech signal using different octave bands from an octave-band filter bank.

Design a 1/2 octave filter with an estimated center frequency of 800 Hz. Use
isStandardCompliant to find the nearest compliant center frequency.

octFilt = octaveFilter(800,'1/2 octave');
[complianceStatus,suggestedCenterFrequency] = isStandardCompliant(octFilt,'class 0')

complianceStatus =

 logical

 0

suggestedCenterFrequency =

 841.3951

Change the center frequency of the octFilt object to the suggested center frequency
returned by isStandardCompliant. Get a list of valid ANSI S1.11-2004 center
frequencies, given your specified octFilt center frequency.

octFilt.CenterFrequency = suggestedCenterFrequency;
Fo = getANSICenterFrequencies(octFilt);

Create an audio file reader and audio device writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a scope to visualize the filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'Title','Octave-Band Filtering',...
 'ShowLegend',true,...
 'ChannelNames',{'Original signal','Filtered signal'});

3 System objects in Audio System Toolbox

3-258

In an audio stream loop, process the audio signal using your octave-band filter. Vary the
center frequency to hear the effect. As a best practice, release your objects after
processing.

index = 12;
octFilt.CenterFrequency = Fo(index);
count = 1;
while ~isDone(fileReader)
 x = fileReader();
 y = octFilt(x);
 scope([x,y])
 deviceWriter(y);

 if mod(count,100)==0
 octFilt.CenterFrequency = Fo(index);
 index = index+1;
 end
 count = count+1;
end

release(scope)
release(deviceWriter)
release(fileReader)

 octaveFilter System object

3-259

Remove Noise from Tone Scale

Remove additive noise from an audio tone scale using an octaveFilter System
object™.

Create audioOscillator and audioDeviceWriter System objects with default
properties. Create an octaveFilter System object with the center frequency set to 100
Hz.

osc = audioOscillator;
deviceWriter = audioDeviceWriter;
octFilt = octaveFilter(100);

3 System objects in Audio System Toolbox

3-260

In an audio stream loop, listen to a tone created by your audio oscillator. The tone
contains additive Gaussian noise.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 deviceWriter(x1);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 end
end

Create a spectrum analyzer to view your filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'Title','Octave-Band Filtering', ...
 'ShowLegend',true, ...
 'SpectralAverages',10, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Reset the frequency of your audio oscillator to its default, 100 Hz.

osc.Frequency = 100;

In an audio stream loop, filter the corrupted tone using your octave-band filter. When the
tone changes frequency in the loop, change the center frequency of your octave filter to
match. As a best practice, release your audio device once done.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 x2 = octFilt(x1);
 deviceWriter(x2);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 octFilt.CenterFrequency = octFilt.CenterFrequency*2;
 end
 scope([x1,x2])
end

release(deviceWriter)

 octaveFilter System object

3-261

Design Compliant High-Frequency Filters

Design a sixth-order 1/3 octave filter with a sample rate of 96 kHz.

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','1/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center
frequencies defined by the standard depend on the Bandwidth and SampleRate
properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

3 System objects in Audio System Toolbox

3-262

centerFrequencies =

 1.0e+04 *

 Columns 1 through 7

 0.0004 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016

 Columns 8 through 14

 0.0020 0.0025 0.0032 0.0040 0.0050 0.0063 0.0079

 Columns 15 through 21

 0.0100 0.0126 0.0158 0.0200 0.0251 0.0316 0.0398

 Columns 22 through 28

 0.0501 0.0631 0.0794 0.1000 0.1259 0.1585 0.1995

 Columns 29 through 35

 0.2512 0.3162 0.3981 0.5012 0.6310 0.7943 1.0000

 Columns 36 through 41

 1.2589 1.5849 1.9953 2.5119 3.1623 3.9811

Set the center frequency of the octave filter to 19.953 kHz and visualize the response
with a 'class 0' compliance mask.

octFilt.CenterFrequency = centerFrequencies(38);
visualize(octFilt,'class 0')

 octaveFilter System object

3-263

The red mask on the plot defines the bounds for the magnitude response of the filter. The
magnitude response of this filter goes above the upper bound of the compliance mask
around 6.6 kHz. One way to counter this is to increase the filter order so that the filter's
rolloff is steeper.

To bring the octave filter design into compliance, set the octave filter order to 8.

octFilt.FilterOrder = 8;

3 System objects in Audio System Toolbox

3-264

Another option to bring the octave filter design into compliance is to set the Overample
property to true. This designs and runs the filter at twice the specified SampleRate to
reduce the effects of the bilinear transformation during the design stage.

octFilt.FilterOrder = 6;
octFilt.Oversample = true;

 octaveFilter System object

3-265

Design Compliant Low-Frequency Filters

Design a sixth-order 2/3 octave filter with a 96 kHz sample rate.

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','2/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center
frequencies defined by the standard depend on the Bandwidth and SampleRate
properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

3 System objects in Audio System Toolbox

3-266

centerFrequencies =

 1.0e+04 *

 Columns 1 through 7

 0.0004 0.0006 0.0010 0.0016 0.0025 0.0040 0.0063

 Columns 8 through 14

 0.0100 0.0158 0.0251 0.0398 0.0631 0.1000 0.1585

 Columns 15 through 20

 0.2512 0.3981 0.6310 1.0000 1.5849 2.5119

Set the center frequency of the octave filter to ~6 Hz and visualize the response with a
'class 0' compliance mask.

octFilt.CenterFrequency = centerFrequencies(2);
visualize(octFilt,'class 0')

 octaveFilter System object

3-267

The red mask on the plot defines the bounds for the magnitude response of the filter. The
magnitude response of this filter goes below the lower bound of the compliance mask
between 5.5 and 7.5 Hz.

Low-frequency filters in an octave filter bank have very low normalized center
frequencies, and the filters designed for them have poles that are almost on the unit
circle. To make this filter ANSI compliant, it has to be designed and operated at a lower
sample rate.

To bring the octave filter design into compliance, set the sample rate to 48 kHz.

octFilt.SampleRate = 48e3;

3 System objects in Audio System Toolbox

3-268

Definitions

Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass
filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower and upper
band edge frequencies.

 octaveFilter System object

3-269

Algorithms

Octave Bandwidth to Band Edge Conversion

The octaveFilter System object uses the specified center frequency and filter
bandwidth in octaves to determine the normalized band edges [2].

The object computes the upper and lower band edge frequencies:

f f G b
pa c= ¥

-1
2

f f G b
pb c= ¥

1
2

• fc is the normalized center frequency specified by the CenterFrequency property.
• b is the octave bandwidth specified by the Bandwidth property. For example, if

Bandwidth is specified as '1/3 octave', the value of b is 3.
• G is a conversion constant:

G = 10
3

10.

Digital Filter Design

The octaveFilter System object implements a higher-order digital bandpass filter
design method specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass
analog prototype, which is then mapped back to a digital bandpass filter:

3 System objects in Audio System Toolbox

3-270

1 The analog Butterworth filter is expressed as a cascade of second-order sections:
H s H s H s H s

N
() () () () ,= 1 2 2L

where:

H s

s s

i Ni

i

()

cos

, , ,...,=

- +

=
1

1 2

1 2 2

0

2

0
2W W

q

q
p

i
N

N i i N= - +() =
2

1 2 1 2 2, , ,..,

N is the filter order specified by the FilterOrder property.
2 The analog Butterworth filter is mapped to a digital filter using a bandpass version

of the bilinear transformation:

s
cz z

z

=
- +

-

- -

-

1

1

1 2

2
,

where

c =
+()

+

sin

sin sin
.

w w

w w

pa pb

pa pb

This mapping results in the following substitution:

W0 =
-c cos

sin
.

w

w

pb

pb

3 The analog prototype is evaluated:

H z

s s
i

i

s
cz z

z

()

cos

=

- +

=
- +

-

- -

-

1

1 2
0

2

0
2

1 2

1

1 2

2

W W

q

Because s is second-order in z, the bandpass version of the bilinear transformation is
fourth-order in z.

 octaveFilter System object

3-271

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Octave Filter

System Objects
dsp.BiquadFilter | multibandParametricEQ | weightingFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3 System objects in Audio System Toolbox

3-272

getANSICenterFrequencies
Get the list of valid ANSI S1.11-2004 center frequencies

Syntax
centerFrequencies = getANSICenterFrequencies(octFilt)

Description
centerFrequencies = getANSICenterFrequencies(octFilt) returns a vector of
valid center frequencies as specified by the ANSI S1.11-2004 standard.

Examples

Get ANSI Center Frequencies

Create an object of the octaveFilter System object™. Call
getANSICenterFrequencies to get a list of valid center frequencies.

octFilt = octaveFilter;
centerFrequencies = getANSICenterFrequencies(octFilt)

centerFrequencies =

 1.0e+03 *

 Columns 1 through 7

 0.0079 0.0158 0.0316 0.0631 0.1259 0.2512 0.5012

 Columns 8 through 11

 getANSICenterFrequencies

3-273

 1.0000 1.9953 3.9811 7.9433

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

Output Arguments
centerFrequencies — Center frequencies
vector

Center frequencies specified by the ANSI S1.11-2004 standard, returned as a vector.

The range for computing valid center frequencies is 3 Hz to (Fs/2) Hz, where the
SampleRate property of your octave filter defines Fs.
Data Types: single | double

See Also
Blocks
Octave Filter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3 System objects in Audio System Toolbox

3-274

isStandardCompliant
Verify octave filter design is ANSI S1.11-2004 compliant

Syntax
complianceStatus = isStandardCompliant(octFilt,classType)
[complianceStatus,centerFreq] = isStandardCompliant(octFilt,
classType)

Description
complianceStatus = isStandardCompliant(octFilt,classType) returns a
logical scalar, complianceStatus, indicating whether the complianceStatus filter
design is compliant with the ANSI S1.11-2004 standard for classType.

The mask used to determine compliance is centered on the nearest ANSI-compliant
center frequency that ensures the center frequency of the object falls between the upper
and lower band edges of the mask.

[complianceStatus,centerFreq] = isStandardCompliant(octFilt,
classType) also returns the ANSI-compliant center frequency used to create the mask.

Examples

Verify Standard Compliance

Create an object of the octaveFilter System object™. Call isStandardCompliant,
specifying the compliance class type to check as the second argument.

octFilt = octaveFilter;
complianceStatus = isStandardCompliant(octFilt,'class 2')

complianceStatus =

 isStandardCompliant

3-275

 logical

 1

Get ANSI-Compliant Center Frequency

Create an object of the octaveFilter System object. Check the compliance to class 0 status
of your object, and get the center frequency used to create the compliance mask.

octFilt = octaveFilter('CenterFrequency',1266);
[compliant, centerFreq] = isStandardCompliant(octFilt,'class 0')

compliant =

 logical

 0

centerFreq =

 1000

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

classType — Compliance class type
'class 0' | 'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 0', 'class 1 or 'class 2'.
Data Types: char

3 System objects in Audio System Toolbox

3-276

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status
indicates whether the octFilt filter design is compliant with the ANSI S1.11-2004
standard for classType.

If your octave filter is noncompliant, try any of the following:

• Set the center frequency to one of the values returned by
getANSICenterFrequencies

• Increase filter order
• Increase sample rate

Data Types: logical

centerFreq — Center frequency of mask
scalar

Center frequency used to create the compliance mask, returned as a scalar.
Data Types: single | double

See Also
Blocks
Octave Filter

System Objects
dsp.BiquadFilter | multibandParametricEQ | weightingFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

 isStandardCompliant

3-277

visualize
Visualize and validate filter response

Syntax
visualize(octFilt)
visualize(octFilt,N)
visualize(___ ,mType)

Description
visualize(octFilt) plots the magnitude response of the octave-band filter, octFilt.
The plot is updated automatically when properties of the object change.

visualize(octFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType,
using either of the previous syntaxes. Specify mType as 'class 0', 'class 1', or
'class 2'. The mask attenuation limits are defined in the ANSI S1.11-2004 standard.
The mask center frequency is the ANSI standard center frequency, with band edge
frequencies on either side of the CenterFrequency set in octFilt.

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Examples

Plot Octave Filter Magnitude Response

Create an object of the octaveFilter System object™ and then plot the magnitude
response of the filter.
octFilt = octaveFilter;
visualize(octFilt)

3 System objects in Audio System Toolbox

3-278

Specify Number of Frequency Bins

Create an object of the octaveFilter System object™. Plot a 5096-point frequency
representation.

octFilt = octaveFilter;
visualize(octFilt,5096)

 visualize

3-279

Visualize Standard-Compliance Mask

Create an object of the octaveFilter System object™. Visualize the class 1 compliance
of the filter design.

octFilt = octaveFilter;
visualize(octFilt,'class 1')

3 System objects in Audio System Toolbox

3-280

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar.
The default is 2048.

 visualize

3-281

Data Types: single | double

mType — Type of mask
'class 0' | 'class 1' | 'class 2'

Type of mask, specified as 'class 0', 'class 1, or 'class 2'.

The mask attenuation limits are defined in the ANSI S1.11-2004 standard. The mask
center frequency is the ANSI standard center frequency, with band edge frequencies on
either side of the CenterFrequency set in octFilt.

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Data Types: char

See Also

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3 System objects in Audio System Toolbox

3-282

reverberator System object

Add reverberation to audio signal

Description
The reverberator System object adds reverberation to mono or stereo audio signals.

To add reverberation to your input:

1 Create the reverberator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
reverb = reverberator
reverb = reverberator(Name,Value)

 reverberator System object

3-283

Description

reverb = reverberator creates a System object, reverb, that adds artificial
reverberation to an audio signal.

reverb = reverberator(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: reverb = reverberator('PreDelay',0.5,'WetDryMix',1) creates a
System object, reverb, with a 0.5 second pre-delay and a wet-to-dry mix ratio of one.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

PreDelay — Pre-delay for reverberation (s)
0 (default) | real positive scalar

Pre-delay for reverberation in seconds, specified as a real scalar in the range [0, 1].

Pre-delay for reverberation is the time between hearing direct sound and the first early
reflection. The value of PreDelay is proportional to the size of the room being modeled.

Tunable: Yes
Data Types: single | double

HighCutFrequency — Lowpass filter cutoff (Hz)
20000 (default) | real positive scalar

Lowpass filter cutoff in Hz, specified as a real positive scalar in the range 0 to

SampleRate

2

Ê
ËÁ

ˆ
¯̃

.

3 System objects in Audio System Toolbox

3-284

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the
front of the reverberator structure. It prevents the application of reverberation to high-
frequency components of the input.

Tunable: Yes
Data Types: single | double

Diffusion — Density of reverb tail
0.5 (default) | real scalar

Density of reverb tail, specified as a real positive scalar in the range [0, 1].

Diffusion is proportional to the rate at which the reverb tail builds in density.
Increasing Diffusion pushes the reflections closer together, thickening the sound.
Reducing Diffusion creates more discrete echoes.

Tunable: Yes
Data Types: single | double

DecayFactor — Decay factor of reverb tail
0.5 (default) | real scalar

Decay factor of reverb tail, specified as a real positive scalar in the range [0, 1].

DecayFactor is proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use
a short reverb tail (high decay factor).

Tunable: Yes
Data Types: single | double

HighFrequencyDamping — High-frequency damping
0.0005 (default) | real scalar

High-frequency damping, specified as a real positive scalar in the range [0, 1].

HighFrequencyDamping is proportional to the attenuation of high frequencies in the
reverberation output. Setting HighFrequencyDamping to a large value makes high-
frequency reflections decay faster than low-frequency reflections.

 reverberator System object

3-285

Tunable: Yes
Data Types: single | double

WetDryMix — Wet-dry mix
0.3 (default) | real scalar

Wet-dry mix, specified as a real positive scalar in the range [0, 1].

Wet-dry mix is the ratio of wet (reverberated) to dry (original) signal that your
reverberator System object outputs.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = reverb(audioIn)

3 System objects in Audio System Toolbox

3-286

Description

audioOut = reverb(audioIn) adds reverberation to the input signal, audioIn, and
returns the mixed signal, audioOut. The type of reverberation is specified by the
algorithm and properties of the reverberator System object, reverb.

Input Arguments

audioIn — Audio input to reverberator
column vector | N-by-2 matrix

Audio input to the reverberator, specified as a column vector or two-column matrix. The
columns of the matrix are treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from reverberator
N-by-2 matrix (default)

Audio output from the reverberator, returned as a two-column matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to reverberator
createAudioPluginClass Create audio plugin class that implements functionality of

System object

 reverberator System object

3-287

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the compressor System object to user-facing parameters:
Property Range Mapping Unit
PreDelay [0, 1] linear s
HighCutFrequency [20, 20000] log Hz
Diffusion [0, 1] linear none
DecayFactor [0, 1] linear none
HighFrequencyDam
ping

[0, 1] linear none

WetDryMix [0, 1] linear none

Examples

Add Reverberation to Audio Signal

Use the reverberator System object™ to add artificial reverberation to an audio signal
read from a file.

Create the dsp.AudioFileReader and audioDeviceWriter System objects. Use the
sample rate of the reader as the sample rate of the writer.

3 System objects in Audio System Toolbox

3-288

fileReader = dsp.AudioFileReader(...
 'FunkyDrums-44p1-stereo-25secs.mp3', ...
 'SamplesPerFrame',1024);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Play 10 seconds of the audio signal through your device.

tic
while toc < 10
 audio = fileReader();
 deviceWriter(audio);
end
release(fileReader)

Construct a reverberator System object with default settings.

reverb = reverberator

reverb =

 reverberator with properties:

 PreDelay: 0
 HighCutFrequency: 20000
 Diffusion: 0.5000
 DecayFactor: 0.5000
 HighFrequencyDamping: 5.0000e-04
 WetDryMix: 0.3000
 SampleRate: 44100

Construct a time scope to visualize the original audio signal and the audio signal with
added artificial reverberation.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',10, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1,1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Audio with Reverberation vs. Original');

 reverberator System object

3-289

Play the audio signal with artificial reverberation. Visualize the audio with reverberation
and the original audio.

while ~isDone(fileReader)
 audio = fileReader();
 audioWithReverb = reverb(audio);
 deviceWriter(audioWithReverb);
 scope([audioWithReverb(:,1),audio(:,1)])
end

release(fileReader)
release(deviceWriter)

3 System objects in Audio System Toolbox

3-290

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology
described in [1] and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

 reverberator System object

3-291

The description for the algorithm that follows is for a stereo input. A mono input is a
simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x n x n x n[] . [] []= ¥ +()0 5 R L .

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

•
The pre-delay output is determined as x n x n kp[] []= - , where the PreDelay property
determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP z

z

() ,=
-

-
-

1

1 1

a

a

where

a p= - ¥
Ê

Ë
Á

ˆ

¯
˜exp .2

f

f

c

s

• fc is the cutoff frequency specified by the HighCutFrequency property.

3 System objects in Audio System Toolbox

3-292

• fs is the sampling frequency specified by the SampleRate property.

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP z
z

z

k

k
() ,=

+

+

-

-

b

b1

where β is the coefficient specified by the Diffusion property and k is the delay as
follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a
reverberation tail.

 reverberator System object

3-293

The following description tracks the signal as it progresses through the top of the tank.
The signal progression through the bottom of the tank follows the same pattern, with
different delay specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from
the bottom of the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP z
z

z

k

k1
1

() =
- +

-

-

-

b

b

• β is the coefficient specified by the Diffusion property.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude =

(8/29761) * SampleRate. To account for fractional delay resulting from the
modulating k, allpass interpolation is used [2].

3 System objects in Audio System Toolbox

3-294

3 The signal is delayed again, and then passes through a lowpass filter:

LP z

z
2 1

1

1
() =

-

-
-

j

j

• φ is the coefficient specified by the HighFrequencyDamping property.
4 The signal is multiplied by a gain specified by the DecayFactor property. The

signal then passes through an allpass filter:

AP z
z

z

k

k5
1

() .=
+

+

-

-

b

b

• β is the coefficient specified by the Diffusion property.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the
next iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the
tank is calculated as the signed sum of delay lines picked off at various points from the
tank. The summed output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:
y n x n x nR R R[] [] [] ,= -() +1 3k k

y n x n x nL L L[] [] [] ,= -() +1 3k k

where the WetDryMix property determines κ.

References

[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the
Audio Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of
the Audio Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

 reverberator System object

3-295

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Reverberator

Introduced in R2016a

3 System objects in Audio System Toolbox

3-296

wavetableSynthesizer System object

Generate periodic signal from single-cycle waveforms

Description
The wavetableSynthesizer System object generates a periodic signal with tunable
properties. The periodic signal is defined by a single-cycle waveform cached as the
Wavetable property of your wavetableSynthesizer object.

To generate a periodic signal:

1 Create the wavetableSynthesizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
waveSynth = wavetableSynthesizer

 wavetableSynthesizer System object

3-297

waveSynth = wavetableSynthesizer(wavetableValue)
waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue)
waveSynth = wavetableSynthesizer(___ ,Name,Value)

Description

waveSynth = wavetableSynthesizer creates a wavetable synthesizer System object,
waveSynth, with default property values.

waveSynth = wavetableSynthesizer(wavetableValue) sets the Wavetable
property to wavetableValue.

waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue) sets
the Frequency property to frequencyValue.

waveSynth = wavetableSynthesizer(___ ,Name,Value) sets each property Name
to the specified Value. Unspecified properties have default values.
Example: waveSynth = wavetableSynthesizer('Amplitude',2,'DCOffset',
2.5) creates a System object, waveSynth, that generates the default sine waveform with
an amplitude of 2 and a DC offset of 2.5.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Wavetable — Single-cycle waveform
sin(2*pi*(0:511)/512) (default) | vector of real values

Single-cycle waveform, specified as a vector of real values. The algorithm of the
wavetableSynthesizer indexes into the single-cycle waveform to synthesize a periodic
wave.

3 System objects in Audio System Toolbox

3-298

This property is semi-tunable. You can tune the values of the wavetable when the object
is locked. However, you cannot tune the length of the wavetable when the object is
locked.

Tunable: Yes
Data Types: single | double

Frequency — Frequency of generated signal (Hz)
100 (default) | real scalar

Frequency of generated signal in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated signal
1 (default) | real scalar

Amplitude of generated signal, specified as a real scalar greater than or equal to 0.

The generated signal is multiplied by the value specified by Amplitude at the output,
before DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated signal
0 (default) | real scalar

Normalized phase offset of generated signal, specified as a real scalar with values in the
range [0, 1]. The range is a normalized 2π radians interval.

Tunable: No
Data Types: single | double

DCOffset — Value added to each element of generated signal
0 (default) | real scalar

Value added to each element of the generated signal, specified as a real scalar.

 wavetableSynthesizer System object

3-299

Tunable: Yes
Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1, 192000].

This property determines the vector length that your wavetableSynthesizer object
outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Sample rate of generated signal (Hz)
44100 (default) | real positive scalar

Sample rate of generated signal in Hz, specified as a real positive scalar.

Tunable: Yes

OutputDataType — Data type of generated signal
'double' (default) | 'single'

Data type of generated signal, specified as 'double' or 'single'.

Tunable: No
Data Types: char

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

3 System objects in Audio System Toolbox

3-300

Syntax
waveform = waveSynth()

Description

waveform = waveSynth() generates a periodic signal, waveform. The type of signal is
specified by the algorithm and properties of the wavetableSynthesizer System object,
waveSynth.

Output Arguments

waveform — Waveform output from wavetable synthesizer
column vector (default)

Waveform output from the wavetable synthesizer, returned as a column vector with
length specified by the SamplesPerFrame property and data type specified by the
OutputDataType property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wavetableSynthesizer
createAudioPluginClass Create audio plugin class that implements functionality of

System object

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

 wavetableSynthesizer System object

3-301

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the wavetableSynthesizer System object to user-facing parameters:
Property Range Mapping Unit
Frequency [0.1, 20000] log Hz
Amplitude [0, 10] linear none
DCOffset [–10, 10] linear none

Examples

Generate Variable-Frequency Staircase Wave

Define and plot a single-cycle waveform.

values = -1:0.1:1;
singleCycleWave = ones(100,1) * values;
singleCycleWave = reshape(singleCycleWave,numel(singleCycleWave),1);

plot(singleCycleWave)
xlabel('Index')
ylabel('Amplitude')

3 System objects in Audio System Toolbox

3-302

Create a wavetable synthesizer, waveSynth, to generate a staircase wave using the
single-cycle waveform. Specify a frequency of 10 Hz.

waveSynth = wavetableSynthesizer(singleCycleWave,10);

Create a time scope to visualize the staircase wave generated by waveSynth.

scope = dsp.TimeScope(...
 'SampleRate',waveSynth.SampleRate, ...
 'TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Staircase Wave');

 wavetableSynthesizer System object

3-303

Place the wavetable synthesizer in an audio stream loop. Increase the frequency of your
staircase wave in 10 Hz increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 staircaseWave = waveSynth();
 scope(staircaseWave)
 if mod(counter,1000)==0
 waveSynth.Frequency = waveSynth.Frequency + 10;
 end
end

3 System objects in Audio System Toolbox

3-304

Manipulate Audio Samples Using Wavetable Synthesizer

Sample an audio file and save it to the Wavetable property of a
wavetableSynthesizer System object™. Use the wavetable synthesizer to manipulate
your audio sample.

 wavetableSynthesizer System object

3-305

Read in an entire audio file. Clip out an interesting sound from the audio and then play
it.
[audio,fs] = audioread('MainStreetOne-24-96-stereo-63secs.wav');

engine = audio(5.35e6:5.45e6);
sound(engine,fs)

Create a wavetable synthesizer using your audio clip. The duration of the engine audio
clip is numel(engine)/fs seconds. In the wavetableSynthesizer, set the
Frequency property to 1/(clip duration). The generated signal now plays back at the
same rate it was recorded at.
duration = numel(engine)/fs;
waveSynth = wavetableSynthesizer('Wavetable',engine,'SampleRate',fs, ...
 'Frequency',1/duration);

Create an audioDeviceWriter to write to your audio device.

deviceWriter = audioDeviceWriter('SampleRate',fs);

In a loop, play the wavetable synthesizer to your device. After three seconds, begin
increasing the frequency of the wavetable synthesizer. After six seconds, begin
decreasing the frequency of the wavetable synthesizer.
timeElapsed = 0;
while timeElapsed < 9
 audioWave = waveSynth();
 deviceWriter(audioWave);

 if (timeElapsed > 3) && (timeElapsed < 6)
 waveSynth.Frequency = waveSynth.Frequency + 0.001;
 elseif timeElapsed > 6
 waveSynth.Frequency = waveSynth.Frequency - 0.002;
 end

 timeElapsed = timeElapsed + waveSynth.SamplesPerFrame*(1/fs);
end

Modify Wavetable While Stream Processing

Modify the Wavetable property of a wavetableSynthesizer System object™ while
stream processing. Visualize the wavetable and play the resulting audio.

3 System objects in Audio System Toolbox

3-306

Create a single-cycle waveform for the wavetableSynthesizer to index into. Create a
wavetable synthesizer object.

t = 0:0.001:1;
exponent = 5;
waveTable = [t.^exponent,fliplr(t.^exponent)] - 0.5;

waveSynth = wavetableSynthesizer('Wavetable',waveTable);

Create a dsp.ArrayPlot object to plot the wavetable as it is modified over time. Create
an audioDeviceWriter object to listen to the signal output by your wavetable
synthesizer.

arrayPlotter = dsp.ArrayPlot('YLimits',[-1,1],'PlotType','Line');
deviceWriter = audioDeviceWriter;

In an audio stream loop, incrementally modify the Wavetable property of the wavetable
synthesizer and plot it. Call the synthesizer to output a waveform and play the waveform
to your audio device.

tic
while toc < 10
 exponent = exponent - 0.01;
 waveSynth.Wavetable = [t.^abs(exponent),fliplr(t.^abs(exponent))] - 0.5;

 arrayPlotter(waveSynth.Wavetable')

 deviceWriter(waveSynth());
end

release(deviceWriter)

 wavetableSynthesizer System object

3-307

Algorithms
The wavetableSynthesizer System object synthesizes periodic signals using a cached
single-cycle waveform, specified waveform properties, and phase memory.

3 System objects in Audio System Toolbox

3-308

Compute Increment

Compute the increment step size:

D = ¥
Frequency

SampleRate
N ,

where N is the number of elements in your wavetable.

Compute Wavetable Index

Compute Wavetable index,

i n
i n

i n N

i n N

i n N
[]

[]

[]

[]

[]
,=

- +

- + -

Ï
Ì
Ó

- <

- ≥

1

1

1

1

D

D

for 2 £ £n SamplesPerFrame . The PhaseOffset property determines i[n=1].

Linear Interpolation

Index into the Wavetable and perform linear interpolation:

w
i i

i
=

-() ¥ +Wavetable Wavetable Wavetable

Wavetable

L L

H

[] [] []

[

1 e

]] [] []
.

-()¥ +

>

£

Ï
Ì
Ô

ÓÔ Wavetable WavetableL L

H

Hi i

i N

i Ne

 wavetableSynthesizer System object

3-309

• i i nL = +floor([])1

• i i
H L

= +1

• e = -i ifloor()

Apply Amplitude and DC Offset

Multiply by Amplitude and add DCOffset.
waveform w= ¥ +Amplitude DCOffset

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
System Objects
audioOscillator

Introduced in R2016a

3 System objects in Audio System Toolbox

3-310

weightingFilter System object

Frequency-weighted filter

Description
The weightingFilter System object performs frequency-weighted filtering
independently across each input channel.

To perform frequency-weighted filtering:

1 Create the weightingFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
weightFilt = weightingFilter

 weightingFilter System object

3-311

weightFilt = weightingFilter(weightType)
weightFilt = weightingFilter(weightType,Fs)
weightFilt = weightingFilter(___ ,Name,Value)

Description

weightFilt = weightingFilter creates a System object, weightFilt, that performs
frequency-weighted filtering independently across each input channel.

weightFilt = weightingFilter(weightType) sets the Method property to
weightType.

weightFilt = weightingFilter(weightType,Fs) sets the SampleRate property to
Fs.

weightFilt = weightingFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: weightFilt = weightingFilter('C-weighting','SampleRate',
96000) creates a C-weighting filter with a sample rate of 96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

Method — Type of weighting
'A-weighting' (default) | 'C-weighting' | 'K-weighting'

Type of weighting, specified as 'A-weighting', 'C-weighting', or 'K-weighting'.
See “Algorithms” on page 3-325 for more information.

Tunable: No

3 System objects in Audio System Toolbox

3-312

Data Types: char

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = weightFilt(audioIn)

Description
audioOut = weightFilt(audioIn) applies frequency-weighted filtering to the input
signal, audioIn, and returns the filtered signal, audioOut. The type of filtering is
specified by the algorithm and properties of the weightingFilter System object,
weightFilt.

Input Arguments
audioIn — Audio input to weighting filter
matrix

Audio input to the weighting filter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from weighting filter
matrix

 weightingFilter System object

3-313

Audio output from the weighting filter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to weightingFilter
visualize Visualize and validate filter response
getFilter Return biquad filter object with design parameters set
createAudioPluginClass Create audio plugin class that implements functionality of

System object
isStandardCompliant Verify filter design is IEC 61672-1:2002 compliant

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Validate Filter Compliance

Check the compliance status of filter designs and visualize them.

Create an A-weighting filter with a 22.5 kHz sample rate. Verify that the filter is
standard compliant and visualize the filter design.

3 System objects in Audio System Toolbox

3-314

aWeight = weightingFilter('A-weighting','SampleRate',22500);
complianceStatus = isStandardCompliant(aWeight,'class 1')
visualize(aWeight,'class 1')

complianceStatus =

 logical

 0

Change your A-weighting filter sample rate to 44.1 kHz. Verify that the filter is standard
compliant and visualize the filter design.

 weightingFilter System object

3-315

aWeight.SampleRate = 44100;
complianceStatus = isStandardCompliant(aWeight,'class 1')
visualize(aWeight,'class 1')

complianceStatus =

 logical

 1

3 System objects in Audio System Toolbox

3-316

Perform A-Weighted Filtering

Use the weightingFilter System object™ to design an A-weighted filter, and then
process an audio signal using your frequency-weighted filter design.

Create a dsp.AudioFileReader System object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader('Filename', ...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame, ...
 'PlayCount',Inf);

Create a weightingFilter System object. Use the sample rate of the reader as the
sample rate of the weighting filter.

Fs = reader.SampleRate;
weightFilt = weightingFilter('A-weighting',Fs);

Visualize the filter response and verify that it fits within the class 1 mask of the IEC
61672-1:2002 standard.

visualize(weightFilt,'class 1')

 weightingFilter System object

3-317

Create a spectrum analyzer to visualize the original audio signal and the audio signal
after frequency-weighted filtering.
scope = dsp.SpectrumAnalyzer(...
 'SampleRate',Fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title','A-Weighted Filtering', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the
original audio. As a best practice, release the System objects when complete.

3 System objects in Audio System Toolbox

3-318

tic
while toc < 20
 x = reader();
 y = weightFilt(x);
 scope([x(:,1),y(:,1)])
end

release(weightFilt)
release(scope)
release(reader)

 weightingFilter System object

3-319

Compare Weighting Types

Compare the A-weighted, C-weighted, and K-weighted filtering of an engine sound.

Create an A-weighting filter, a C-weighting filter, and a K-weighting filter. Visualize the
filters for analysis and comparison.

wF{1} = weightingFilter;
visualize(wF{1})

wF{2} = weightingFilter('C-weighting');
visualize(wF{2})

wF{3} = weightingFilter('K-weighting');
visualize(wF{3})

3 System objects in Audio System Toolbox

3-320

 weightingFilter System object

3-321

Create a dsp.AudioFileReader and specify a sound file. Create an
audioDeviceWriter with default properties. In an audio stream loop, play the white
noise, and then listen to it filtered through the A-weighted, C-weighted, and K-weighted
filters, successively.
fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

fprintf('No filtering...')
for i = 1:400
 x = fileReader();
 if i==100
 index = 1;
 fprintf('A-weighted filtering...')
 elseif i==200

3 System objects in Audio System Toolbox

3-322

 index = 2;
 fprintf('C-weighted filtering...')
 elseif i==300
 index = 3;
 fprintf('K-weighted filtering...\n')
 end
 if i>99
 y = wF{index}(x);
 else
 y = x;
 end
 deviceWriter(y);
end

release(deviceWriter)
release(fileReader)

No filtering...A-weighted filtering...C-weighted filtering...K-weighted filtering...

Use Weighting Filter Design with Biquad Filter

The weightingFilter object uses second-order sections (SOS) for filtering. To extract
the weighting filter design, use getFilter to return a dsp.BiquadFilter object with
the SOSMatrix and ScaleValues properties set.

Use weightingFilter to create C-weighted and A-weighted filter objects. Use
getFilter to return corresponding dsp.BiquadFilter objects.

cFilt = weightingFilter('C-weighting');
aFilt = weightingFilter('A-weighting');
cSOSFilter = getFilter(cFilt);
aSOSFilter = getFilter(aFilt);

Create an audio file reader and audio device writer for audio input/output. Use the
sample rate of your reader as the sample rate of your writer.

fileReader = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, play the unfiltered signal. Release your file reader so that the
next time you call it, it reads from the beginning of the file.

 weightingFilter System object

3-323

tic
while toc<8
 x = fileReader();
 deviceWriter(x);
end
release(fileReader)

Play the signal processed by the A-weighted filter. Then play the signal processed by the
C-weighted filter. Cache the power in each frame of the original and filtered signals for
analysis. As a best practice, release your file reader and device writer once complete.
y = [];
count = 1;
tic
while ~isDone(fileReader)
 x = fileReader();
 aFiltered = aSOSFilter(x);
 cFiltered = cSOSFilter(x);
 if toc>8
 deviceWriter(cFiltered);
 else
 deviceWriter(aFiltered);
 end
 xPower(count) = var(x);
 aPower(count) = var(aFiltered);
 cPower(count) = var(cFiltered);
 y = [y;x];
 count = count+1;
end

release(fileReader)
release(deviceWriter)

Plot the power of the original signal, the A-weighted signal, and the C-weighted signal
over time.
subplot(2,1,1)
 spectrogram(y,512,256,4096,fileReader.SampleRate,'yaxis')
 title('Original Signal')
subplot(2,1,2)
 t = linspace(0,16.3468,count-1);
 plot(t,xPower,'r',t,aPower,'b',t,cPower,'g')
 legend('Original Signal','A-Weighted','C-Weighted')
 xlabel('Time (s)')
 ylabel('Power')

3 System objects in Audio System Toolbox

3-324

Algorithms

A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB
attenuation at 100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements
of noise level are increasingly found in sales literature for domestic appliances. In most
countries, the use of A-weighting is mandated for the protection of workers against noise-
induced deafness. The ISO and ICOA standards mandate A-weighting for all civil
aircraft noise measurements.

 weightingFilter System object

3-325

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for an A-weighting
filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

C-Weighting

The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8
kHz. C-curves are used in sound level meters for sounds that are louder than those
intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

3 System objects in Audio System Toolbox

3-326

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of
two stages of filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

The table shows the coefficients for the filters.

 weightingFilter System object

3-327

First Stage Shelving Coefficients Second Stage Highpass Coefficients

a
1

1 69065929318241= - . a
1

1 99004745483398= - .

a
2

0 73248077421585= . a
2

0 99007225036621= .

b
0

1 53512485958697= . b
0

1 0= .

b
1

2 6916918940638= - . b
1

2 0= - .

b
2

1 19839281085285= . b
2

1 0= .

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients
are recomputed for nonstandard sample rates using the algorithm described in [4].

References

[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical
Measurements. ANSI S1.42-2001. New York, NY: American National Standards
Institute, 2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part
1: Specifications. First Edition. IEC 61672-1. 2002–2005.

[3] International Telecommunication Union. Algorithms to measure audio programme
loudness and true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. "Implementation and
Evaluation of Autonomous Multi-track Fader Control." Paper presented at the
132nd Audio Engineering Society Convention, Budapest, Hungary, 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

3 System objects in Audio System Toolbox

3-328

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Weighting Filter

System Objects
dsp.BiquadFilter | multibandParametricEQ | octaveFilter

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement Using Weighting Filters”

Introduced in R2016b

 weightingFilter System object

3-329

isStandardCompliant
Verify filter design is IEC 61672-1:2002 compliant

Syntax
complianceStatus = isStandardCompliant(weightFilt,classType)
complianceStatus = isStandardCompliant(___ ,freqRange)

Description
complianceStatus = isStandardCompliant(weightFilt,classType) returns a
logical scalar, complianceStatus, indicating whether the weightFilt filter design is
compliant with the minimum and maximum attenuation specifications for the
classType design specified in IEC 61672-1:2002. You can check compliance for A-
weighting and C-weighting filters only.

complianceStatus = isStandardCompliant(___ ,freqRange) specifies the range
of frequencies checked for compliance.

Examples

Verify Class 1 Standard Compliance

Create an object of the weightingFilter System object™. Call
isStandardCompliant, specifying the compliance class type to check as the second
argument.

weightFilt = weightingFilter;
complianceStatus = isStandardCompliant(weightFilt,'class 1')

complianceStatus =

 logical

3 System objects in Audio System Toolbox

3-330

 1

Specify Frequency Range Checked for Compliance

Create an object of the weightingFilter System object™. Check the 'class 2'
compliance status of the filter design over a specified frequency range.

weightFilt = weightingFilter;
isStandardCompliant(weightFilt,'class 2',[120,2000])

ans =

 logical

 1

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

classType — Compliance class type
'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 1 or 'class 2'.
Data Types: char

freqRange — Frequency range checked for compliance (Hz)
[minFreq,maxFreq] | two-element vector of increasing values

Specify the frequency range, in Hz, checked for compliance as a two-element vector of
increasing values: [minFreq,maxFreq].
Data Types: single | double

 isStandardCompliant

3-331

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status
indicates whether the weightFilt filter design is compliant with the minimum and
maximum attenuation specifications for the class type design specified by IEC
61672-1:2002 standard. Compliance can only be checked for A-weighting and C-
weighting filters.
Data Types: logical

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for
designing the A-weighted and C-weighted filters. The pole-zero values are based on
analog filters, so the design can break compliance for lower sample rates.

See Also

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement Using Weighting Filters”

Introduced in R2016b

3 System objects in Audio System Toolbox

3-332

visualize
Visualize and validate filter response

Syntax
visualize(weightFilt)
visualize(weightFilt,N)
visualize(___ ,mType)

Description
visualize(weightFilt) plots the magnitude response of the frequency-weighted
filter, weightFilt. The plot is updated automatically when properties of the object
change.

visualize(weightFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType,
using either of the previous syntaxes.

Examples

Plot Weighting Filter Magnitude Response

Create an object of the weightingFilter System object™ and then plot the magnitude
response of the filter.

weightFilt = weightingFilter;
visualize(weightFilt)

 visualize

3-333

Specify Number of Frequency Bins in FFT Calculation

Create an object of the octaveFilter System object™. Plot a 1024-point frequency
representation.

weightFilt = weightingFilter;
visualize(weightFilt,1024)

3 System objects in Audio System Toolbox

3-334

Visualize Class 2 Standard-Compliance Mask

Create an object of the weightFilt System object™. Visualize the class 2 compliance of
the filter design.

weightFilt = weightingFilter;
visualize(weightFilt,'class 2')

 visualize

3-335

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar.
The default is 2048.

3 System objects in Audio System Toolbox

3-336

Data Types: single | double

mType — Type of mask
'class 1' (default) | 'class 2'

Type of mask, specified as 'class 1' or 'class 2'.

The mask attenuation limits are defined in the IEC 61672-1:2002 standard. The mask is
defined for A-weighting and C-weighting filters only.

• If the mask is green, the design is compliant with the IEC 61672-1:2002 standard.
• If the mask is red, the design breaks compliance.

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for
designing the A-weighted and C-weighted filters. The pole-zero values are based on
analog filters, so the design can break compliance for lower sample rates.

Data Types: char

See Also

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement Using Weighting Filters”

Introduced in R2016b

 visualize

3-337

Classes in Audio System Toolbox

4

audioPlugin class

Base class for audio plugins

Description
audioPlugin is the base class for audio plugins. In your class definition file, you must
subclass your object from this base class or from the audioPluginSource class, which
inherits from audioPlugin. Subclassing enables you to inherit the attributes necessary
to generate plugins and access Audio System Toolbox functionality.

To inherit from the audioPlugin base class directly, type this syntax as the first line of
your class definition file:

classdef myAudioPlugin < audioPlugin

myAudioPlugin is the name of your object.

For a tutorial on designing audio plugins, see “Design an Audio Plugin”.

Methods
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

Examples

4 Classes in Audio System Toolbox

4-2

Design Valid Audio Plugin

Design a valid basic audio plugin class

Terminology:

• A valid audio plugin is one that can be deployed in a digital audio workstation (DAW)
environment. To validate it, use the validateAudioPlugin function. To generate it,
use the generateAudioPlugin function.

• A basic audio plugin inherits from the audioPlugin class but not the
matlab.System class.

Define a basic audio plugin class that inherits from audioPlugin.

classdef myAudioPlugin < audioPlugin
end

Add a processing function to your plugin class.

All valid audio plugins include a processing function. For basic audio plugins, the
processing function is named process. The processing function is where audio
processing occurs. It always has an output.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Design Valid Audio Plugin That Uses getSampleRate

Design an audioPlugin class that uses the getSampleRate method to get the sample
rate at which the plugin is run. The plugin in this example, simpleStrobe, uses the
sample rate to determine a constant 50 ms strobe period.

classdef simpleStrobe < audioPlugin
 % simpleStrobe Add audio strobe effect
 % Add a strobe effect by gain switching between 0 and 1 in
 % 50 ms increments. Although the input sample rate can change,

 audioPlugin class

4-3

 % the strobe period remains constant.
 %
 % simpleStrobe properties:
 % period - Number of samples between gain switches
 % gain - Gain multiplier, one or zero
 % count - Number of samples since last gain switch
 %
 %
 % simpleStrobe methods:
 % process - Multiply input frame by gain, element by element
 % reset - Reset count and gain to initial conditions
 % and get sample rate

 properties
 Period = 44100*0.05;
 Gain = 1;
 end
 properties (Access = private)
 Count = 1;
 end
 methods
 function out = process(plugin,in)
 for i = 1:size(in,1)
 if plugin.Count == plugin.Period
 plugin.Gain = 1 - plugin.Gain;
 plugin.Count = 1;
 end
 in(i,:) = in(i,:)*plugin.Gain;
 plugin.Count = plugin.Count + 1;
 end
 out = in;
 end
 function reset(plugin)
 plugin.Period = floor(getSampleRate(plugin)*0.05);
 plugin.Count = 1;
 plugin.Gain = 1;
 end

4 Classes in Audio System Toolbox

4-4

 end
end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPluginSource

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Design an Audio Plugin”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

 audioPlugin class

4-5

getSampleRate
Class: audioPlugin

Get sample rate at which the plugin is run

Syntax
sampleRate = getSampleRate(myAudioPlugin)

Description
sampleRate = getSampleRate(myAudioPlugin) returns the sample rate in Hz at
which the plugin is being run.

• In a digital audio workstation (DAW) environment, the DAW user sets the sample
rate. getSampleRate interacts with the DAW to determine the sample rate.

• In the MATLAB environment, getSampleRate returns the value set by a previous
call to setSampleRate. If setSampleRate has not been called, getSampleRate
returns the default value, 44100.

Introduced in R2016a

4 Classes in Audio System Toolbox

4-6

setSampleRate
Class: audioPlugin

Set sample rate at which the plugin is run

Syntax
setSampleRate(myAudioPlugin,sampleRate)

Description
setSampleRate(myAudioPlugin,sampleRate) sets the sample rate of the plugin,
myAudioPlugin, to the value specified by sampleRate. Specify sampleRate as a
positive real integer. setSampleRate enables the MATLAB environment to mimic
behavior in a digital audio workstation (DAW) environment.

Note A plugin must not call setSampleRate on itself. If the plugin attempts to call
setSampleRate on itself, generateAudioPlugin throws an error.

Introduced in R2016a

 setSampleRate

4-7

audioPluginSource class

Base class for audio source plugins

Description
audioPluginSource is the base class for audio source plugins. Use audio source plugins
to produce audio signals.

To create a valid audio source plugin, in your class definition file, subclass your object
from the audioPluginSource class. Subclassing enables you to inherit the attributes
necessary to generate audio source plugins and access Audio System Toolbox
functionality. To inherit from the audioPluginSource base class directly, type this
syntax as the first line of your class definition file:

classdef myAudioSourcePlugin < audioPluginSource

myAudioSourcePlugin is the name of your object.

Methods

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment

only)

Inherited Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

4 Classes in Audio System Toolbox

4-8

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

Examples

Design Valid Audio Plugin

Design a valid basic audio source plugin class

Terminology:

• A valid audio source plugin is one that can be deployed in a digital audio workstation
(DAW) environment. To validate it, use the validateAudioPlugin function. To
generate it, use the generateAudioPlugin function.

• A basic audio source plugin inherits from the audioPluginSource class but not the
matlab.System class.

Define a basic audio source plugin class that inherits from audioPluginSource.

classdef myAudioSourcePlugin < audioPluginSource
end

Add a processing function to your audio source plugin class.

All valid audio source plugins include a processing function. For basic audio source
plugins, the processing function is named process. The processing function defines the
audio signal that your plugin outputs. Audio source plugins do not accept audio signals
as input to the processing function.

The default audio plugin interface assumes a stereo output. Specify the processing
output as a matrix with two columns. These columns correspond to the left and right
channels of a stereo signal. The number of rows in the output matrix correspond to the
frame size.

The output frame size must match the frame size of the environment in which the plugin
is run. A DAW environment has variable frame size. To determine the current
environment frame size, call getSamplesPerFrame in the process function.

 audioPluginSource class

4-9

classdef myAudioSourcePlugin < audioPluginSource
 methods
 function out = process(plugin)
 out = 0.5*randn(getSamplesPerFrame(plugin),2);
 end
 end
end

myAudioSourcePlugin generates a Gaussian white noise audio signal with 0.5
standard deviation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPlugin

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Design an Audio Plugin”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

4 Classes in Audio System Toolbox

4-10

getSamplesPerFrame
Class: audioPluginSource

Get frame size returned by the plugin

Syntax
frameSize = getSamplesPerFrame(myAudioSourcePlugin)

Description
frameSize = getSamplesPerFrame(myAudioSourcePlugin) returns the frame size
at which the plugin is run. frameSize is the number of output samples (rows) that the
current call to the processing function of myAudioSourcePlugin must return.

• In a digital audio workstation (DAW) environment, getSamplesPerFrame interacts
with the DAW to determine the frame size. Frame size can vary from call to call, as
determined by the DAW environment.

• In the MATLAB environment, getSamplesPerFrame returns the value set by a
previous call to the setSamplesPerFrame method. If setSamplesPerFrame has not
been called, then getSamplesPerFrame returns the default value, 256.

Note When authoring source plugins in MATLAB, getSamplesPerFrame is valid only
when called in the processing function.

Introduced in R2016a

 getSamplesPerFrame

4-11

setSamplesPerFrame
Class: audioPluginSource

Set frame size returned by the plugin (MATLAB environment only)

Syntax
setSamplesPerFrame(myAudioSourcePlugin,frameSize)

Description
setSamplesPerFrame(myAudioSourcePlugin,frameSize) sets the frame size
(rows) that the source plugin, myAudioSourcePlugin, must return in subsequent calls
to its processing function. Specify frameSize as a real integer greater than or equal to 0.
setSamplesPerFrame enables the MATLAB environment to mimic behavior in a digital
audio workstation (DAW) environment.

Note Do not use setSamplesPerFrame in a generated plugin. If you call
setSamplesPerFrame in your authored plugin, generateAudioPlugin throws an
error.

Introduced in R2016a

4 Classes in Audio System Toolbox

4-12

externalAudioPlugin class

Base class for external audio plugins

Description
externalAudioPlugin is the base class for hosted audio plugins. When you load an
external plugin using loadAudioPlugin, an object of that plugin is created having
externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source
plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods
dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

Inherited Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

 externalAudioPlugin class

4-13

Examples

Specify Hosted Plugin Parameter Values

Load a VST audio plugin into MATLAB® by specifying its full path. If you are using a
Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath)

hostedPlugin =

 VST plugin 'ParametricEQ' 2 in, 2 out

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB
 2 Low Center Frequency: 0.2330 100.000 Hz
 3 Low Q Factor: 0.2822 2.000
 4 Medium Peak Gain: 0.5000 0.000 dB
 5 Medium Center Frequency: 0.5663 1000.000 Hz
 4 parameters not displayed. Use dispParameter(hostedPlugin) to see all 9 params.

Use info to return information about the hosted plugin.

info(hostedPlugin)

ans =

 struct with fields:

 PluginName: 'ParametricEQ'
 Format: 'VST'
 InputChannels: 2
 OutputChannels: 2
 NumParams: 9
 PluginPath: 'E:\jobarchive\Bdoc16b\2016_07_05_h07m05s16_job410158_...'
 VendorName: ''
 VendorVersion: 'V1.0.0'
 UniqueId: 'MWap'

4 Classes in Audio System Toolbox

4-14

Use setParameter to change the normalized value of the Medium Center Frequency
parameter to 0.75. Specify the parameter by its index.
setParameter(hostedPlugin,5,0.75)

When you set the normalized parameter value, the parameter display value is
automatically updated. The normalized parameter value generally corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB
 2 Low Center Frequency: 0.2330 100.000 Hz
 3 Low Q Factor: 0.2822 2.000
 4 Medium Peak Gain: 0.5000 0.000 dB
 5 Medium Center Frequency: 0.7500 3556.559 Hz
 6 Medium Q Factor: 0.2822 2.000
 7 High Peak Gain: 0.5000 0.000 dB
 8 High Center Frequency: 0.8997 10000.000 Hz
 9 High Q Factor: 0.2822 2.000

Alternatively, you can use getParameter to return the normalized value of a single
parameter.
parameterIndex = 5;
parameterValue = getParameter(hostedPlugin,parameterIndex)

parameterValue =

 0.7500

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a
Mac, replace the .dll file extension with .vst.

 externalAudioPlugin class

4-15

pluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and
writes to your audio device. Set the sample rate of the hosted plugin to the sample rate of
the input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the
medium peak gain upward in the loop to hear the effect.

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

See Also
Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPluginSource

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts” (MATLAB)

4 Classes in Audio System Toolbox

4-16

Introduced in R2016b

 externalAudioPlugin class

4-17

dispParameter
Class: externalAudioPlugin

Display information of single or multiple parameters

Syntax
dispParameter(hostedPlugin)
dispParameter(hostedPlugin,parameter)

Description
dispParameter(hostedPlugin) displays all parameters and associated indices,
values, displayed values, and display labels. For example:

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Wet: 1.0000 +0.0 dB
 2 Dry: 1.0000 +0.0 dB
 3 1: Enabled: 1.0000 ON
 4 1: Length: 0.0000 0.0 ms
 5 1: Length: 0.0156 4.00 8N
 6 1: Feedback: 0.0000 -inf dB
 7 1: Lowpass: 1.0000 20000 Hz
 8 1: Hipass: 0.0000 0 Hz
 9 1: Resolution: 1.0000 24 bits
 10 1: Stereo width: 1.0000 1.00
 11 1: Volume: 1.0000 +0.0 dB
 12 1: Pan: 0.5000 0.0 %

The Value column corresponds to the normalized parameter value. Generally, the
normalized parameter value represents the position of a UI widget or MIDI controller.
The Display column corresponds to an internal parameter value used for processing.
The Value and Display are related by an unknown mapping that is internal to the
hosted plugin.

4 Classes in Audio System Toolbox

4-18

dispParameter(hostedPlugin,parameter) displays a subset of parameters. You can
specify a parameter by its name as a character vector, or as a vector of one or more
parameter indices. For example:

• dispParameter(hostedPlugin,'Gain') displays information about the 'Gain'
parameter of hostedPlugin.

• dispParameter(hostedPlugin,[1,3]) displays information about parameters
specified by indices 1 and 3.

Introduced in R2016b

 dispParameter

4-19

getParameter
Class: externalAudioPlugin

Get normalized value and information about parameter

Syntax
value = getParameter(hostedPlugin,parameter)
[value, parameterInformation] = getParameter(hostedPlugin,parameter)

Description
value = getParameter(hostedPlugin,parameter) returns the normalized value of
the parameter of hostedPlugin. You can specify a parameter by its name as a
character vector or by its index. For example:

• getParameter(hostedPlugin,'Gain') returns the normalized value of the hosted
plugin parameter named 'Gain'. If the parameter name is not unique,
getParameter returns an error.

• getParameter(hostedPlugin,2) returns information about the parameter
specified by index 2.

[value, parameterInformation] = getParameter(hostedPlugin,parameter)
returns a structure containing additional information about the specified parameter of
the hosted plugin.
Field Description
DisplayName Display name or prompt of the plugin parameter, returned as a

character vector. The display name is intended for display on the
plugin’s user interface (UI).

4 Classes in Audio System Toolbox

4-20

Field Description
DisplayValue Display value of the plugin parameter, returned as a character vector.

The parameter DisplayValue corresponds to the normalized
parameter value by an unknown mapping internal to the hosted
plugin. Generally, the display value reflects the value used internally
by the plugin for processing, while the normalized parameter value
corresponds to the position of a MIDI control or widget on a UI.

Label Label intended for display with DisplayValue on the plugin’s UI,
returned as a character vector. Typical labels include dB and Hz.

Introduced in R2016b

 getParameter

4-21

info
Class: externalAudioPlugin

Get information about hosted plugin

Syntax
pluginInfo = info(hostedPlugin)

Description
pluginInfo = info(hostedPlugin) returns a structure containing information
about the hosted plugin.
Field Description
PluginName Display name of plugin.
Format Software interface. Supported formats include VST, VST3, and AU.
InputChannels Number of channels passed to the processing function of the plugin.
OutputChannel
s

Number of channels returned from the processing function of the
plugin.

NumParams Total number of plugin parameters.
PluginPath Path specified when plugin is loaded using loadAudioPlugin.
VendorName Name of the plugin creator.
VendorVersion Version number. Typically used to track plugin releases.
UniqueID Unique identifier of plugin used for recognition in certain digital audio

workstation (DAW) environments.

Introduced in R2016b

4 Classes in Audio System Toolbox

4-22

process
Class: externalAudioPlugin

Process audio stream

Syntax
audioOut = process(hostedPlugin,audioIn)

Description
audioOut = process(hostedPlugin,audioIn) returns an audio signal processed
according to the algorithm and parameters of hostedPlugin. For source plugins, call
process without an audio input. Use info(hostedPlugin) to determine the number
of channels (columns) of the input and output audio signal.

Use setSamplesPerFrame(hostedPlugin) to specify the frame size returned by
hosted source plugins.

Introduced in R2016b

 process

4-23

setParameter
Class: externalAudioPlugin

Set normalized parameter value of hosted plugin

Syntax
setParameter(hostedPlugin,parameter,newValue)

Description
setParameter(hostedPlugin,parameter,newValue) sets the normalized value
corresponding to the parameter of hostedPlugin to newValue. Specify the parameter
by its unique display name or its index. Specify the new normalized parameter value as a
scalar in the range 0–1.

For example, assume hostedPlugin has a parameter with index 3 and a unique display
name, 'Gain'. These commands are identical:

• setParameter(hostedPlugin,'Gain',0.2)
• setParameter(hostedPlugin,3,0.2)

Note A hosted plugin might quantize its parameters. The result of setParameter for
quantized parameters depends on the type of quantization.

Introduced in R2016b

4 Classes in Audio System Toolbox

4-24

externalAudioPluginSource class

Base class for external audio source plugins

Description
externalAudioPluginSource is the base class for hosted audio source plugins. When
you load an external plugin using loadAudioPlugin, an object of that plugin is created
having externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source
plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods

Inherited Methods

dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment

only)

 externalAudioPluginSource class

4-25

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

Examples

Specify Hosted Source Plugin Parameter Values

Load a VST audio source plugin into MATLAB® by specifying its full path. If you are
using a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath)

hostedSourcePlugin =

 VST plugin 'oscillator' source, 1 out, 256 samples

 Parameter Value Display

 1 Frequency: 0.5659 100.000 Hz
 2 Amplitude: 0.1000 1.000 AU
 3 DC Offset: 0.5000 0.000 AU

Use info to return information about the hosted plugin.

info(hostedSourcePlugin)

ans =

 struct with fields:

 PluginName: 'oscillator'
 Format: 'VST'
 InputChannels: 0
 OutputChannels: 1
 NumParams: 3
 PluginPath: 'E:\jobarchive\Bdoc16b\2016_07_05_h07m05s16_job410158_...'

4 Classes in Audio System Toolbox

4-26

 VendorName: ''
 VendorVersion: 'V1.0.0'
 UniqueId: 'MWap'

Use setParameter to change the normalized value of the Frequency parameter to 0.8.
Specify the parameter by its index.

setParameter(hostedSourcePlugin,1,0.8)

When you set the normalized parameter value, the parameter display value is
automatically updated. Generally, the normalized parameter value corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally by the plugin for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedSourcePlugin)

 Parameter Value Display

 1 Frequency: 0.8000 1741.101 Hz
 2 Amplitude: 0.1000 1.000 AU
 3 DC Offset: 0.5000 0.000 AU

Alternatively, you can use getParameter to return the normalized value of a single
parameter.

getParameter(hostedSourcePlugin,1)

ans =

 0.8000

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are
using a Mac, replace the .dll file extension with .vst.

 externalAudioPluginSource class

4-27

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your
audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio
stream loop ramps the frequency parameter down and then up.

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || ...
 (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

See Also
Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPlugin

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts” (MATLAB)

4 Classes in Audio System Toolbox

4-28

Introduced in R2016b

 externalAudioPluginSource class

4-29

Blocks in Audio System Toolbox

5

Audio Device Reader
Record from sound card
Library: Audio System Toolbox / Sources

Description
The Audio Device Reader block reads audio samples using your computer's audio device.
The Audio Device Reader block specifies the driver, the device and its attributes, and the
data type and size output from your Audio Device Reader block.

Ports

Output

A — Output signal
scalar | vector | matrix

The output of the Audio Device Reader block is determined by the block’s parameters. If
the block output is a matrix, the columns correspond to independent channels.
Data Types: single | double | int16 | int32 | uint8

5 Blocks in Audio System Toolbox

5-2

O — Number of samples overrun
scalar

This port outputs the number of samples overrun while acquiring a frame of data (one
output matrix).
Dependencies

To enable this port, select the Output number of samples overrun parameter.
Data Types: uint32

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver
option, install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound
card buffer size to the value specified by the Samples per frame parameter. See the
documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, set Sample rate (Hz) to a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the
ALSA driver. Mac machines always use the CoreAudio driver.

Device — Device used to acquire audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio input configuration
button

 Audio Device Reader

5-3

This button opens a dialog box that lists your selected audio driver, the full name of your
audio device, and the maximum input channels for your configuration. For example:

Sample rate (Hz) — Sample rate your device uses to acquire audio data
44100 (default) | integer

The possible range of Sample rate (Hz) depends on your audio hardware.

Number of channels — Number of channels acquired by your audio device
1 (default) | integer

The number of input channels is also the number of channels (matrix columns) output by
the Audio Device Reader block.
Dependencies

To specify which input channels your audio device acquires, on the Advanced tab, select
the Use default mapping between sound card’s input channels and columns of
output of this block parameter.

Samples per frame — Frame size read from audio device
1024 (default) | integer

Samples per frame is also the device buffer size, and the frame size (number of matrix
rows) output by the Audio Device Reader block.

Advanced Tab

Device bit depth — Data type used by device to acquire audio data
16-bit integer (default) | 8-bit integer | 16-bit integer | 24-bit integer
| 32-bit integer

Use default mapping between sound card’s input channels and columns
of output of this block — Toggle channel mapping source
on (default) | off

5 Blocks in Audio System Toolbox

5-4

When you select this parameter, the block uses the default mapping between the sound
card’s input channels and the matrix columns output by this block. When you clear this
parameter, you specify the mapping in Device input channels.

Device input channels — Specify nondefault channel mapping
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault map of device channels and matrix output by the Audio Device Reader block,
specified as a scalar or vector. For example:

If Device input channels is specified as 1:3, then:

• Channel 1 maps to the first column of the output matrix.
• Channel 2 maps to the second column of the output matrix.
• Channel 3 maps to the third column of the output matrix.

If Device input channels is specified as [3,1,2], then:

• Channel 3 maps to the first column of the output matrix.
• Channel 1 maps to the second column of the output matrix.
• Channel 2 maps to the third column of the output matrix.

Dependencies

To specify a nondefault mapping, clear the Use default mapping between sound
card’s input channels and columns of output of this block parameter.

Output number of samples overrun — Specify additional output port for number of
samples overrun
off (default) | on

When you select this parameter, an additional output port, O, is added to the block. The
O port outputs the number of samples overrun while acquiring a frame of data (one
output matrix).

Output data type — Data type output from block
double (default) | single | int32 | int16 | uint8

 Audio Device Reader

5-5

Model Examples

See Also
System Objects
audioDeviceReader | audioDeviceWriter

Blocks
Audio Device Writer

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

5 Blocks in Audio System Toolbox

5-6

Audio Device Writer
Play to sound card
Library: Audio System Toolbox / Sinks

Description
The Audio Device Writer block writes audio samples to an audio output device.

Parameters of the Audio Device Writer block specify the driver, the device, and device
attributes such as sample rate and bit depth.

Ports

Input

Port_1 — Input signal
scalar | vector | matrix

If input to the Audio Device Writer block is of data type double or single, the block
clips values outside the range [–1, 1]. For other data types, the allowed input range is
[min, max] of the specified data type.
Data Types: single | double | int16 | int32 | uint8

 Audio Device Writer

5-7

Output

Port_1 — Number of samples underrun
scalar

This port outputs the number of samples underrrun while writing a frame of data (one
input matrix).

Dependencies

To enable this port, select the Output number of samples underrun parameter.
Data Types: uint32

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver
option, install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound
card buffer size to the frame size (number of rows) input to the Audio Device Writer
block. See the documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and
WASAPI drivers, supply an audio stream with a sample rate supported by your audio
device.

This parameter applies only on Windows machines. Linux machines always use the
ALSA driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio System Toolbox. If the
toolbox is not installed, specifying nondefault Driver values returns an error.

5 Blocks in Audio System Toolbox

5-8

Device — Device used to play audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio output configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your
audio device, and the maximum output channels for your configuration. For example:

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Sample rate (Hz).

Sample rate (Hz) — Sample rate used by device to play audio data
44100 (default) | positive scalar

The possible range of Sample rate (Hz) depends on your audio hardware.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Device bit depth — Data type used by device to perform digital-to-analog conversion
16-bit integer (default) | 8-bit integer | 24-bit integer | 32-bit float

Before performing digital-to-analog conversion, the input data is cast to a data type
specified by this parameter.

 Audio Device Writer

5-9

Note To specify a nondefault Device bit depth, you must install Audio System Toolbox.
If the toolbox is not installed, specifying a nondefault Device bit depth returns an
error.

Use default mapping between columns of input of this block and sound
card’s output channels — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between columns of
the matrix input to this block and the channels of your device. When you clear this
parameter, you specify the mapping in Device output channels.

Device output channels — Specify nondefault channel mapping
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of matrix input to the Audio Device Writer block
and channels of output device, specified as a scalar or vector. For example:

If Device output channels is specified as 1:3, then:

• The first column of the input matrix maps to channel 1.
• The second column of the input matrix maps to channel 2.
• The third column of the input matrix maps to channel 3.

If Device output channels is specified as [3,1,2], then:

• The first column of the input matrix maps to channel 3.
• The second column of the input matrix maps to channel 1.
• The third column of the input matrix maps to channel 2.

Note To selectively map between columns of the input matrix and your sound card's
output channels, you must install Audio System Toolbox. If the toolbox is not installed,
specifying nondefault values for Device output channels returns an error.

Dependencies

To enable this parameter, clear the Use default mapping between columns of input
of this block and sound card’s output channels parameter.

5 Blocks in Audio System Toolbox

5-10

Output number of samples underrun — Specify output port for number of samples
underrun
off (default) | on

When you select this parameter, an output port is added to the block. The port outputs
the number of samples underrrun while writing a frame of data (one input matrix).

Model Examples

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library

files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see “Run
Audio I/O Features Outside MATLAB and Simulink”.

See Also
Blocks
Audio Device Reader | Binary File Reader

System Objects
audioDeviceReader | audioDeviceWriter

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”

 Audio Device Writer

5-11

“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

5 Blocks in Audio System Toolbox

5-12

Compressor
Dynamic range compressor
Library: Audio System Toolbox / Dynamic Range Control

Description
The Compressor block performs dynamic range compression independently across each
input channel. Dynamic range compression attenuates the volume of loud sounds that
cross a given threshold. The block uses specified attack and release times to achieve a
smooth applied gain curve.

Ports

Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

 Compressor

5-13

R — Ratio
scalar
Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0
parameter.
Data Types: single | double

K — Knee width (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-
0 parameter.
Data Types: single | double

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

Output

Y — Output signal
matrix

5 Blocks in Audio System Toolbox

5-14

The Compressor block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Ratio — Compression ratio
5 (default) | scalar in the range 1 to 50 inclusive

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

 Compressor

5-15

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >

Threshold (dB), the compression ratio is defined as
R

x n T

y n T
=

-

-

([])

([]) , where

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in compression characteristic
0 (default) | scalar in the range 0 to 20 inclusive

For soft knee characteristics, the transition area is defined by the relation

y x
R

x T
W

W
= +

-Ê
ËÁ

ˆ
¯̃

¥ - +Ê
ËÁ

ˆ
¯̃

¥()

1
1

2

2

2

for the range 2 ¥ -() £x T W , where

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range
compressor
button

5 Blocks in Audio System Toolbox

5-16

The plot is updated automatically when parameters of the Compressor block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the compressor gain takes to rise from 10% to 90% of its final
value when the input goes above the threshold. The Attack time (s) parameter smooths
the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the compressor gain takes to drop from 90% to 10% of its final
value when the input goes below the threshold. The Release time (s) parameter
smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB)
parameter.

• Auto –– Make-up gain is applied at the output of the Compressor block such that a
steady-state 0 dB input has a 0 dB output.

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

 Compressor

5-17

Make-up gain compensates for gain lost during compression. It is applied at the output of
the Compressor block.

Tunable: Yes
Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in the Input sample rate (Hz)
parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

5 Blocks in Audio System Toolbox

5-18

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink® generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Model Examples

Algorithms
The Compressor block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:
x n x ndB[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
compression characteristic of the Compressor block to attenuate gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

 Compressor

5-19

x x

x x T
W

x
R

x T
W

W
Tsc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

+
-Ê

ËÁ
ˆ
¯̃

- +Ê
ËÁ

ˆ
¯̃

2

1
1

2

2

2

--Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

+
-()

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô

W
x T

W

T
x T

R
x T

W

2 2

2

dB

dB
dB

ÔÔ
Ô
Ô
Ô

,

where T is the threshold, R is the compression ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

x x

x x T

T
x T

R
x T

sc dB

dB dB

dB
dB

() =

<

+
-()

≥

Ï

Ì
Ô

Ó
Ô

3 The computed gain, gc[n], is calculated as
g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack and release time parameters:

g n
g n g n g n g n

g n g
s

A s A c c s

R s R

[
[

]
[] () [], [] []

] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1 cc c s[], [] []n g n g n£ -

Ï
Ì
Ó 1

The attack time coefficient, α A, is calculated as

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, α R, is calculated as

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

T A is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or the Input
sample rate (Hz) parameter.

5 Blocks in Audio System Toolbox

5-20

5 If Make-up gain (dB) is set to Auto, the make-up gain is calculated as the negative
of the computed gain for a 0 dB input:
M x

x
= -

=sc
dB

0
.

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold (dB), Ratio, and Knee
width (dB) parameters. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:
g n g n Mm s[] []= +

7 The calculated gain in dB, gdB[n], is translated to a linear domain:

g n

g n

lin

m

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

8 The output of the dynamic range compressor is given as
y n x n g n[] [] [].= ¥ lin

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic
Range Compressor Design –– A Tutorial And Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

See Also
Blocks
Expander | Limiter | Noise Gate

System Objects
compressor

Topics
“Dynamic Range Control”

Introduced in R2016a

 Compressor

5-21

Crossover Filter
Audio crossover filter
Library: Audio System Toolbox / Filters

Description
The Crossover Filter block implements an audio crossover filter, which is used to split an
audio signal into two or more frequency bands. Crossover filters are multiband filters
whose overall magnitude frequency response is flat.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output
Y1 — Output signal
matrix

Available if Number of crossovers is set to 1, 2, 3, or 4. Port Y1 always corresponds to
a lowpass filter.
Data Types: single | double

5 Blocks in Audio System Toolbox

5-22

Y2 — Output signal
matrix

Depending on the number of crossovers specified, port Y2 outputs the original audio
signal passed through a bandpass or highpass filter.

Available if Number of crossovers is set to 1, 2, 3 or 4.
Data Types: single | double

Y3 — Output signal
matrix

Depending on the number of crossovers specified, port Y3 corresponds to a bandpass or
highpass filter of the original audio signal.

Available if Number of crossovers is set to 2, 3 or 4.
Data Types: single | double

Y4 — Output signal
matrix

Available if Number of crossovers is set to 3 or 4.
Data Types: single | double

Y5 — Output signal
matrix

Available if Number of crossovers is set to 4.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Number of crossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

 Crossover Filter

5-23

If you specify multiple crossovers, the corresponding Crossover frequency (Hz) and
Crossover order parameters populate in the dialog box automatically.

The number of bands output by the Crossover Filter block is one more than the Number
of crossovers.
Number of Crossovers Number of Bands Output
1 two bands
2 three bands
3 four bands
4 five bands

Tunable: No

Crossover frequency (Hz) — Intersections of magnitude response bands
100 (default) | real scalar in the range 20 to 20000

Crossover frequencies are the intersections of magnitude response bands of the
individual two-band crossover filters used in the multiband crossover filter.

Tunable: Yes

Crossover order — Order of individual crossover filters
2 (default) | 1 | 3 | 4 | 5 | 6 | 7 | 8

The crossover filter order relates to the crossover filter slope in dB/octave: slope N= ¥6,

where N is the crossover order.

Tunable: Yes

View filter response — Open plot of magnitude response of each filter band
button

The plot is updated automatically when parameters of the Crossover Filter block change.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

5 Blocks in Audio System Toolbox

5-24

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Model Examples

Algorithms
The Crossover Filter block is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented with
Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

 Crossover Filter

5-25

Odd-Order Crossover Pair
Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair
Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form II transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the
branches of your crossover pair are in-phase.

Even-Order Three-Band Filter
Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

5 Blocks in Audio System Toolbox

5-26

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of
the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References

[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems."
Journal of Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

See Also
System Objects
crossoverFilter

Topics
“Multiband Dynamic Range Compression”

Introduced in R2016a

 Crossover Filter

5-27

Expander
Dynamic range expander
Library: Audio System Toolbox / Dynamic Range Control

Description
The Expander block performs dynamic range expansion independently across each input
channel. Dynamic range expansion attenuates the volume of quiet sounds below a given
threshold. The block uses specified attack, release, and hold times to achieve a smooth
applied gain curve.

Ports

Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

R — Ratio
scalar
Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0
parameter.
Data Types: single | double

5 Blocks in Audio System Toolbox

5-28

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

K — Knee width (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-
0 parameter.
Data Types: single | double

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

HT — Hold time (s)
scalar

 Expander

5-29

Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-
0 parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Expander block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix
Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Ratio — Expansion ratio
5 (default) | scalar in the range 1 to 50 inclusive

5 Blocks in Audio System Toolbox

5-30

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <

Threshold (dB), the expansion ratio is defined as
R

y n T

x n T
=

-

-

([])

([]) , where

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Knee width (dB) — Transition area in the compression characteristic
0 (default) | scalar in the range 0 to 20

For soft knee characteristics, the transition area is defined by the relation

y x

R x T
W

W
= +

- ¥ - -Ê
ËÁ

ˆ
¯̃

¥()

()1
2

2

2

for the range 2 ¥ -() £x T W , where

• y is the output level in dB.
• x is the input level in dB.

 Expander

5-31

• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range
expander
button

The plot is updated automatically when parameters of the Expander block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the expander gain takes to rise from 10% to 90% of its final value
when the input goes below the threshold. The Attack time (s) parameter smooths the
applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the expander gain takes to drop from 90% to 10% of its final
value when the input goes above the threshold. The Release time (s) parameter
smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

5 Blocks in Audio System Toolbox

5-32

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4 inclusive

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

To specify Hold time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in the Input sample rate (Hz)
parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

 Expander

5-33

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Model Examples

Algorithms
The Expander block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:
x n x ndB[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range expander to attenuate gain that is
below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

5 Blocks in Audio System Toolbox

5-34

x x

T x T R x T
W

x

R x T
W

sc dB

dB dB

dB

dB

() =

+ -()¥ < -Ê
ËÁ

ˆ
¯̃

+
-() - -Ê

Ë
Á

ˆ
¯
˜

2

1
2

2

22 2 2

2

W
T

W
x T

W

x x T
W

-Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

> +Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

dB

dB dB

,,

where T is the threshold, R is the expansion ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

x x
T x T R x T

x x T
sc dB

dB dB

dB dB

() =
+ -()¥ <

≥

Ï
Ì
Ô

ÓÔ

3 The computed gain, gc[n], is calculated as
g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack, release, and hold time parameters:

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

C T g n g n

C T

C T g n g n

-

Ï

Ì

Ô
Ô

Ó

Ô
Ô

>() > -()
£

>() £

1

1

]

& [] []

& [] [

A H c s

A H

R H c s --()
£

1]

C TR H

CA and CR are hold counters for attack and release, respectively. The limit, TH, is
determined by the Hold time (s) parameter.

The attack time coefficient, α A, is calculated as

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, α R, is calculated as

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

 Expander

5-35

TA is the attack time period, specified by the Attack time (s) parameter. T R is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

5 The smoothed gain in dB, gs[n], is translated to a linear domain:

g n

g n

lin

s

[] .

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

6 The output of the dynamic range expander is given as
y n x n g n[] [] [].= ¥ lin

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic
Range Compressor Design –– A Tutorial And Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

See Also
Blocks
Compressor | Limiter | Noise Gate

System Objects
expander

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks in Audio System Toolbox

5-36

Graphic EQ
Standards-based graphic equalizer
Library: Audio System Toolbox / Filters

Description
The Graphic EQ block implements a graphic equalizer that can tune the gain on
individual octave or fractional octave bands. The block filters the data independently
across each input channel over time using the filter specifications. Center frequencies for
bands in the graphic equalizer are based on the ANSI S1.11-2004 standard.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Graphic EQ block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

 Graphic EQ

5-37

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector input.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

EQ Order — Order of individual equalizer bands
2 (default) | positive even integer

Specify the order of individual equalizer bands as a positive even integer. All equalizer
bands have the same order.

Tunable: Yes

Bandwidth — Filter bandwidth (octaves)
1 octave (default) | 2/3 octave | 1/3 octave

Specify the filter bandwidth as 1 octave, 2/3 octave, or 1/3 octave.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer.
The ISO 266:1997(E) standard specifies corresponding preferred frequencies for labeling
purposes.

1-Octave Bandwidth
Center frequencies 32 63 126 251 501 1000 1995 3981

7943 15849
Edge frequencies 22 45 89 178 355 708 1413 2818

5623 1122 22387
Preferred frequencies 31.5 63 125 250 500 1000 2000

4000 8000 16000

2/3-Octave Bandwidth

5 Blocks in Audio System Toolbox

5-38

Center frequencies 25 40 63 100 158 251 398 631 1000
1585 2512 3981 6310 10000 15849

Edge frequencies 20 32 50 79 126 200 316 501 794
1259 1995 3162 5012 7943 12589
19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000
1600 2500 4000 6300 10000 16000

1/3-Octave Bandwidth
Center frequencies 25 32 40 50 63 79 100 126 158 200

251 316 398 501 631 794 1000 1259
1585 1995 2512 3162 3981 5012
6310 7943 10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178
224 282 355 447 562 708 891 1122
1413 1778 2239 2818 3548 4467
5623 7079 8913 11220 14125 17783
22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160
200 250 315 400 500 630 800 1000
1250 1600 2000 2500 3150 4000
5000 6300 8000 10000 12500 16000
20000

Tunable: Yes

Structure — Type of implementation
Cascade (default) | Parallel

Specify the type of implementation as Cascade or Parallel. See “Algorithms” on page
5-41 and “Graphic Equalization” for information about these implementation
structures.

Tunable: No

Gains — Gain of each octave or fractional octave band (dB)
0 | scalar

 Graphic EQ

5-39

Specify the gain of each octave or fractional octave band in dB. The number and position
of filters in the graphic equalizer depends on the Bandwidth on page 5-0 parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in Input sample rate (Hz) on
page 5-0 .

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input on page 5-0
parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is faster than
Interpreted execution.

Tunable: No

5 Blocks in Audio System Toolbox

5-40

Model Examples

Algorithms
The implementation of your graphic equalizer depends on the Structure on page 5-0
parameter. See “Graphic Equalization” for a discussion of the pros and cons of the
parallel and cascade implementations. Refer to the following sections to understand how
these algorithms are implemented in Audio System Toolbox.

Parallel Structure

The parallel implementation designs the individual equalizers using the octaveFilter
design method and spaces them on the spectrum according to the ANSI S1.11-2004
standard.

 Graphic EQ

5-41

If you set the Input sample rate (Hz) parameter so that the Nyquist frequency (Input
sample rate (Hz)/2) is less than the final bandpass edge defined by the ANSI
S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the
Nyquist frequency.

• The final filter is implemented as a highpass filter designed by the designParamEQ
function.

1 The input signal is fed into a filterbank of M filters, where M depends on the
specified Bandwidth and Input sample rate (Hz) parameters.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding
element of the Gains parameter.

3 The branches are summed and the output signal is returned.

Cascade Structure

5 Blocks in Audio System Toolbox

5-42

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.

If the EQ Order on page 5-0 parameter is set to 2, then a gain correction is calculated
according to [1]. The gain correction is independent of the requested gains. The gain
correction is recomputed during the real-time processing only if the Input sample rate
(Hz) parameter is modified.

If the EQ Order parameter is not set to 2, no gain correction is applied and the
requested gains are passed on to the multibandParametricEQ object.

The input signal is fed into a cascade of M biquad filters, where M depends on the
specified Bandwidth and Input sample rate (Hz) parameters.

References
[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic

Equalizer with Accurate Frequency Response Control." Presented at the 139th
Convention of the AES, New York, October 2015.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

[3] International Organization for Standardization. Acoustics –– Preferred frequencies.
ISO 266:1997(E). Second Edition. 1997.

See Also
System Objects
graphicEQ | multibandParametricEQ

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”

 Graphic EQ

5-43

“Equalization”

5 Blocks in Audio System Toolbox

5-44

Limiter
Dynamic range limiter
Library: Audio System Toolbox / Dynamic Range Control

Description
The Limiter block performs dynamic range limiting independently across each input
channel. Dynamic range limiting suppresses the volume of loud sounds that cross a given
threshold. The block uses specified attack and release times to achieve a smooth applied
gain curve.

Ports

Input

x — Input signal
1-D vector | matrix

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

 Limiter

5-45

K — Knee width (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-
0 parameter.
Data Types: single | double

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

Output
Y — Output signal
matrix

The Limiter block outputs a signal with the same data type as the input signal. The size
of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.

5 Blocks in Audio System Toolbox

5-46

Data Types: single | double

G — Gain applied to each input sample
matrix
Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Knee width (dB) — Transition area in the limiter characteristic
0 (default) | scalar in the range 0 to 20 inclusive

For soft knee characteristics, the transition area is defined by the relation

y x

x T
W

W
= -

- +Ê
ËÁ

ˆ
¯̃

¥()
2

2

2

for the range 2 ¥ -() £x T W , where

• y is the output level in dB.
• x is the input level in dB.

 Limiter

5-47

• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range limiter
button

The plot is updated automatically when parameters of the Limiter block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the limiter gain takes to rise from 10% to 90% of its final value
when the input goes above the threshold. The Attack time (s) parameter smooths the
applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the limiter gain takes to drop from 90% to 10% of its final value
when the input goes below the threshold. The Release time (s) parameter smooths the
applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

5 Blocks in Audio System Toolbox

5-48

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB)
parameter.

• Auto –– Make-up gain is applied at the output of the Limiter block such that a
steady-state 0 dB input has a 0 dB output.

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

Make-up gain compensates for gain lost during limiting. It is applied at the output of the
Limiter block.

Tunable: Yes

Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in the Input sample rate (Hz)
parameter.

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

 Limiter

5-49

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Model Examples

Algorithms
The Limiter block processes a signal frame by frame and element by element.

5 Blocks in Audio System Toolbox

5-50

1 The N-point signal, x[n], is converted to decibels:
x n x ndB[] log []= ¥20 10

2 xdB[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range limiter to brickwall gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

x x

x x T
W

x

x T
W

W
T

W
sc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

-
- +Ê

Ë
Á

ˆ
¯
˜

-Ê
ËÁ

ˆ
¯̃

£

2

2

2 2

2

xx T
W

T x T
W

dB

dB

£ +Ê
ËÁ

ˆ
¯̃

> +Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

2

2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

x x
x x T

T x T
sc dB

dB dB

dB

() =
<

≥

Ï
Ì
Ó

3 The computed gain, gc[n], is calculated as
g n x n x nc sc dB[] [] [].= -

4 gc[n] is smoothed using specified attack and release time parameters:

g n
g n g n g n g n

g n g

c

s
A s A c s

R s R

[]
[] () [], [] []

[] ()
=

- + - > -

- + -

a a

a a

1 1 1

1 1
cc

n g n g n[], [] []c s£ -

Ï
Ì
Ó 1

The attack time coefficient, αA , is calculated as

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, αR , is calculated as

 Limiter

5-51

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

TA is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

5 If the Make-up gain (dB) parameter is set to Auto, the make-up gain is calculated
as the negative of the computed gain for a 0 dB input:
M x x= - =sc dB()0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold (dB) and Knee width
(dB) parameters. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:
g n g n Mm s[] []= +

7 The calculated gain in dB, gm[n], is translated to a linear domain:

g n

g n

lin

m

[]

[]

=
Ê
Ë
Á

ˆ
¯
˜

10 20

8 The output of the dynamic range limiter is given as
y n x n g n[] [] [].= ¥ lin

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic
Range Compressor Design –– A Tutorial And Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

See Also
Blocks
Compressor | Expander | Noise Gate

System Objects
limiter

5 Blocks in Audio System Toolbox

5-52

Topics
“Dynamic Range Control”

Introduced in R2016a

 Limiter

5-53

Loudness Meter
Standard-compliant loudness measurements
Library: Audio System Toolbox / Measurements

Description
The Loudness Meter block measures the loudness and true-peak of an audio signal based
on EBU R 128 and ITU-R BS.1770-4 standards.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel. If you
use the default Channel weights, specify the input channels in order: [Left, Right,
Center, Left surround, Right surround].

• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output
M — Momentary loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the
input signal.
Data Types: single | double

5 Blocks in Audio System Toolbox

5-54

S — Short-term loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the
input signal.
Data Types: single | double

TP — True-peak value
real scalar

The block outputs a real scalar with the same data type as the input signal.
Dependencies

To enable this port, select the Output true-peak value parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Channel weights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

The number of elements of the row vector must be equal to or greater than the number of
input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the input to the Loudness Meter block as a matrix whose
columns correspond to channels in this order: [Left, Right, Center, Left surround, Right
surround].

It is a best practice to consistently specify the channel weights in order: [Left, Right,
Center, Left surround, Right surround].

Tunable: Yes

Use relative scale for loudness measurements — Specify block to output
loudness measurements relative to target level
off (default) | on

 Loudness Meter

5-55

• On — The loudness measurements are relative to the value specified by Target
loudness level (LUFS). The output of the block is returned in loudness units (LU).

• Off — The loudness measurements are absolute, and returned in loudness units full
scale (LUFS).

Tunable: No

Target loudness level (LUFS) — Reference level for relative loudness
measurements
–23 (default) | real scalar

For example, if the Target loudness level (LUFS) is –23, then a loudness value of –24
LUFS is reported as –1 LU.

Tunable: Yes

Dependencies

To enable this parameter, select the Use relative scale for loudness measurements
parameter.

Output true-peak value — Add output port for true-peak value
off (default) | on

When you select this parameter, an additional output port, TP, is added to the block. The
TP port outputs the true-peak value of the input frame.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

5 Blocks in Audio System Toolbox

5-56

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Model Examples

Algorithms
The Loudness Meter block calculates the momentary loudness, short-term loudness, and
true-peak value of an audio signal. You can specify any number of channels and
nondefault channel weights used for loudness measurements. The block algorithm is
described for the general case of n channels and default channel weights.

 Loudness Meter

5-57

Loudness Measurements

The input channels, x, pass through a K-weighted filter implemented using the algorithm
of the Weighting Filter block. The K-weighted filter shapes the frequency spectrum to
reflect perceived loudness.

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. If the required number of samples have not been collected yet, the Loudness
Meter block returns the last computed value for momentary loudness. If enough
samples have been collected, then the power (mean square) of each segment of the K-
weighted channels is calculated:

mP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mL G mP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your Loudness Meter block.

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. If the required number of samples have not been collected yet, the Loudness
Meter block returns the last computed values for short-term loudness and loudness
range. If enough samples have been collected, then the power (mean square) of each
K-weighted channel is calculated:

sP
w

y ki i
k

w

=

=

Â
1 2

1

[]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

5 Blocks in Audio System Toolbox

5-58

2 The short-term loudness, sL, is computed for each segment:

sL G sP LUFSi c i c

c

n

= - + ¥
Ê

Ë
ÁÁ

ˆ

¯
˜̃()

=
Â0 691 10 10

1

. log ,

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your Loudness Meter block.

True-Peak

The true-peak measurement considers only the current input frame of a call to your
loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input
sample rate determines the exact oversampling. An input sample rate below 750 Hz
is not considered.
Input Sample Rate (kHz) Upsample Factor
[0.75,1.5) 256
[1.5,3) 128
[3,6) 64
[6,12) 32
[12,24) 16
[24,48) 8
[48,96) 4
[96,192) 2
[192,∞) not required

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase
length of 12 and stopband attenuation of 80 dB. The filter design uses
designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:
c b= ¥ ()20 10log

4 The true-peak is determined as the maximum of the converted signal, c.

 Loudness Meter

5-59

References

[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to
Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.
1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum
Level of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

See Also
Functions
integratedLoudness

System Objects
loudnessMeter

Introduced in R2016b

5 Blocks in Audio System Toolbox

5-60

MIDI Controls
Output values from controls on MIDI control surface
Library: Audio System Toolbox / Sources

Description
The MIDI Controls block outputs values from controls on a MIDI control surface in real
time. Use the MIDI Controls block to interact with your audio processing model.

The MIDI Controls block combines the functionality of the general MIDI functions in
MATLAB: midicontrols, midiread, midisync. Use the MATLAB midiid command
to discover MIDI device names or MIDI device control numbers.

Ports

Output

Port_1 — Output signal
matrix

The output size of the MIDI Controls block is determined by the MIDI controls and
MIDI control numbers parameters.

The output data type is determined by the Output mode parameter.
Data Type Output Mode
double Normalized (0-1)
uint8 RAW MIDI (0-127)

Data Types: double | uint8

 MIDI Controls

5-61

Parameters
MIDI device — MIDI control surface your block listens to
Default (default) | Specify other

To set the default MIDI device, use the setpref function. For example, if the device is
named BCF2000, at the MATLAB command line, enter:

setpref('midi','DefaultDevice','BCF2000');

MIDI device name — Device name of MIDI control surface your block listens to
character vector

The MIDI device name is assigned by the device manufacturer or host operating system,
and specified as a character vector. Use midiid to interactively identify your MIDI
device.

To enable this parameter, set MIDI device to Specify other.

MIDI controls — Specify if block responds to all controllers or specific controllers on MIDI
surface
Respond to any control (default) | Respond to specified controls

This parameter also determines the size of the block output port. If you choose Respond
to any control, then the block output is a scalar corresponding to the value of the
most recently manipulated control.

MIDI control numbers — Control numbers associated with MIDI surface controllers that
your block responds to
0 (default) | integer | array of integers

Use midiid to interactively identify the control numbers of your MIDI device. This
parameter is available when you set MIDI controls to Respond to specified
controls.

Initial values — Control numbers associated with MIDI surface controllers that your
block responds to
0 (default) | scalar | array

If you specify Initial values as a scalar, all controls specified by MIDI control
numbers are assigned that value.

5 Blocks in Audio System Toolbox

5-62

If you specify Initial values as an array, the array must be the same size as MIDI
control numbers.

Send initial values to device at start — Synchronize MIDI surface with values
specified initial values
off (default) | on

Select this parameter to synchronize a MIDI device with values specified by the Initial
values when simulation starts. If your MIDI device can receive and respond to
messages, it adjusts its controls as specified. This parameter is valid only when MIDI
controls is set to Respond to specified controls.

Many MIDI devices are not bidirectional. Selecting this parameter with a unidirectional
device has no effect. The MIDI Controls block cannot tell whether a value is successfully
sent to a device or even whether the device is bidirectional. If sending a value fails, no
errors or warnings are generated.

Output Mode — Output mode for MIDI control value
Normalized (0-1) (default) | RAW MIDI (0-127)

Model Examples

See Also
Functions
midicontrols | midiid | midiread | midisync

Topics
“Musical Instrument Digital Interface (MIDI)”

 MIDI Controls

5-63

Noise Gate
Dynamic range gate
Library: Audio System Toolbox / Dynamic Range Control

Description
The Noise Gate block performs dynamic range gating independently across each input
channel. Dynamic range gating suppresses signals below a given threshold. The block
uses specified attack, release, and hold times to achieve a smooth applied gain curve.

Ports

Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

5 Blocks in Audio System Toolbox

5-64

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

HT — Hold time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-
0 parameter.
Data Types: single | double

Output
Y — Output signal
matrix

The Noise Gate block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.

 Noise Gate

5-65

Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range gate
button

The plot is updated automatically when parameters of the Noise Gate block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the applied gain takes to rise from 10% to 90% of its final value
when the input goes below the threshold. The Attack time (s) parameter smooths the
applied gain curve.

5 Blocks in Audio System Toolbox

5-66

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the applied gain takes to drop from 90% to 10% of its final value
when the input goes above the threshold. The Release time (s) parameter smooths the
applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the
operation threshold.

To specify Hold time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | scalar

Tunable: Yes

 Noise Gate

5-67

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The
G port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Model Examples

Algorithms
The Noise Gate block processes a signal frame by frame and element by element.

5 Blocks in Audio System Toolbox

5-68

1 The N-point signal, x[n], is converted to magnitude:
x n x na[] []=

2 xa[n] passes through the gain computer. The gain computer uses the static
characteristic properties of the dynamic range gate to apply a brickwall gain for
signal below the threshold:

g x
x T

x Tc a
a lin

a lin

() =
<

≥

Ï
Ì
Ó

0

1

Tlin is the threshold property converted to a linear domain:

T

T

lin

dB

=
Ê
Ë
Á ˆ

¯
˜

10
20

.

3 The computed gain, gc[n], is smoothed using specified attack, release, and hold time
parameters:

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

if C T g n g n

if C T

if C T g n

-

Ï

Ì

Ô
Ô

Ó

Ô
Ô

>() > -()
£

>()
1

1

]

& [] []

& [

A H c s

A H

R H c]] []£ -()
£

g n

if C T

s

R H

1

CA and CR are hold counters for attack and release, respectively. The limit, TH, is
determined by the Hold time (s) parameter.

The attack time coefficient, αA, is calculated as

 Noise Gate

5-69

aA
A

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

The release time coefficient, αR, is calculated as

aR
R

= -
¥

Ê

Ë
Á

ˆ

¯
˜exp

log()
.

9

Fs T

TA is the attack time period, specified by the Attack time (s) parameter. T R is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

4 The output of the dynamic range gate is given as
y n x n g n[] [] [].= ¥ s

References

[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic
Range Compressor Design –– A Tutorial And Analysis." Journal of Audio
Engineering Society. Vol. 60, Issue 6, 2012, pp. 399–408.

See Also
Blocks
Compressor | Expander | Limiter

System Objects
noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks in Audio System Toolbox

5-70

Octave Filter
Octave-band and fractional octave-band filter
Library: Audio System Toolbox / Filters

Description
The Octave Filter block performs octave-band or fractional octave-band filtering
independently across each input channel. An octave-band is a frequency band where the
highest frequency is twice the lowest frequency. Octave-band and fractional octave-band
filters are commonly used to mimic how humans perceive loudness. Octave filters are
best understood when viewed on a logarithmic scale, which models how the human ear
weights the spectrum.

Ports

Input
x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

CF — Center frequency (Hz)
scalar in the range 3 to 22,000 inclusive
Dependencies

To enable this port, select Specify from input port for the “Center frequency (Hz)” on
page 5-0 parameter.

 Octave Filter

5-71

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Octave Filter block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of octave filter
6 (default) | even integer

Tunable: No

Center frequency (Hz) — Center frequency of octave filter
1000 (default) | scalar in the range 3 to 22,000 inclusive

• The maximum center frequency is the value that causes the upper band edge to be
equal to the Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be
equal to 1 Hz. Frequencies below this value are quantized to 1 Hz.

To specify Center frequency (Hz) from an input port, select Specify from input port
for the parameter.

Tunable: Yes

5 Blocks in Audio System Toolbox

5-72

Bandwidth — Filter bandwidth in octaves
1 octave (default) | 2/3 octave | 1/2 octave | 1/3 octave | 1/6 octave | 1/12
octave | 1/24 octave | 1/48 octave

Tunable: Yes

Oversample the input by 2 for this filter — Oversample toggle
off (default) | on

• off –– The Octave Filter block runs at the input sample rate.
• on –– The Octave Filter block runs at two times the input sample rate. Oversampling

minimizes the frequency warping effects introduced by the bilinear transformation.
An FIR halfband interpolator implements oversampling before octave filtering. A
halfband decimator reduces the sample rate back the input sampling rate after octave
filtering.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires

 Octave Filter

5-73

additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution –– Simulate the model using the MATLAB interpreter.
This option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Create a mask for filter response visualization
No mask (default) | Class 0 | Class 1 | Class 2

The mask attenuation limits are defined in the ANSI S1.11-2004 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes

Visualize filter response — Open plot to visualize magnitude response and
compliance mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

Model Examples

Definitions

Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass
filter.

5 Blocks in Audio System Toolbox

5-74

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower- and upper-
band edge frequencies.

Algorithms

Octave Bandwidth to Band Edge Conversion

The Octave Filter block uses the specified center frequency and filter bandwidth in
octaves to determine the normalized band edges [2].

First the block computes the upper and lower band edge frequencies:

f f G b
pa c= ¥

-1
2

f f G b
pb c= ¥

1
2

• fc is the normalized center frequency specified by the Center frequency (Hz)
parameter.

• b is the octave bandwidth specified by the Bandwidth parameter. For example, if
Bandwidth is specified as 1/3 octave, the value of b is 3.

• G is a conversion constant:

G = 10
3

10.

Digital Filter Design

The Octave Filter block implements a higher-order digital bandpass filter design method
as specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass
analog prototype, which is then mapped back to a digital bandpass filter:

 Octave Filter

5-75

1 The analog Butterworth filter is expressed as a cascade of second-order sections:
H s H s H s H s

N
() () () () ,= 1 2 2L where:

∑ =

- +

=H s

s s

i Ni

i

()

cos

, , , ...,
1

1 2

1 2 2

0

2

0
2W W

q

∑ = - +() =q
p

i
N

N i i N N
2

1 2 1 2 2, , ,..., ,...,

N is the filter order specified by the Filter order parameter.
2 The analog Butterworth filter is mapped to a digital filter using a bandpass version

of the bilinear transformation:

s
cz z

z

=
- +

-

- -

-

1

1

1 2

2
,

where

c =
+()

+

sin

sin sin
.

w w

w w

pa pb

pa pb

This mapping results in the following substitution:

W0 =
-c cos

sin

w

w

pb

pb

3 The analog prototype is evaluated:

5 Blocks in Audio System Toolbox

5-76

H z

s s

s
cz z

z

i

i

()

cos

=

- +

=
- +

-

- -

-

1

1 2
0

2

0
2

1 2

1

1 2

2

W W

q

Because s is second-order in z, the bandpass version of the bilinear transformation is
fourth-order in z.

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters: ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

See Also
System Objects
octaveFilter | weightingFilter

Blocks
Weighting Filter

Introduced in R2016b

 Octave Filter

5-77

Parametric EQ Filter
Second-order parametric equalizer filter
Library: Audio System Toolbox / Filters

Description
The Parametric EQ Filter block filters each channel of the input signal over time using a
specified center frequency, bandwidth, and peak (dip) gain. This block offers tunable
filter design parameters, which enable you to tune the filter characteristics while the
simulation is running. The filter uses a coupled allpass structure to optimize joint
computation of the peak and notch response.

This block supports variable-size input, enabling you to change the channel length
during simulation. To enable variable-size input, clear the Inherit sample rate from
input parameter. The number of channels must remain constant.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

Data Types: single | double

5 Blocks in Audio System Toolbox

5-78

Output

Port_1 — Output signal
matrix

The Parametric EQ Filter block outputs a signal with the same data type as the input
signal. The size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter specification — Specify parameters or coefficients used to design filter
Bandwidth and center frequency (default) | Coefficients | Quality factor
and center frequency

• Bandwidth and center frequency –– Design the filter using Filter bandwidth
(Hz), Equalizer center frequency (Hz), and Gain (dB).

• Coefficients –– Design the filter using Bandwidth coefficient, Center
frequency coefficient, and Gain (Linear Units).

• Quality factor and center frequency –– Design the filter using Equalizer
center frequency (Hz), Gain (dB), and Quality factor.

Tunable: No

Filter bandwidth (Hz) — Bandwidth of the filter
2205 (default) | positive scalar

Specify the filter bandwidth as a positive scalar that is less than half the sample rate of
the input signal.

Tunable: Yes

 Parametric EQ Filter

5-79

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center
frequency.

Equalizer center frequency (Hz) — Center frequency of the filter
11025 (default) | positive scalar

Specify the center frequency as a positive scalar that is less than half the sample rate of
the input signal.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency.

Gain (dB) — Peak or dip gain of the filter
6.0206 (default) | real scalar

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency.

Bandwidth coefficient — Coefficient that determines the filter bandwidth
0.72654 (default) | scalar in the range –1 to 1

• -1 corresponds to the maximum bandwidth (one-fourth the sample rate of the input
signal).

• 1 corresponds to the minimum bandwidth (0 Hz, that is, an allpass filter).

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Coefficients.

5 Blocks in Audio System Toolbox

5-80

Center frequency coefficient — Coefficient that determines the filter center
frequency
0 (default) | scalar in the range –1 to 1

• -1 corresponds to the minimum center frequency (0 Hz).
• 1 corresponds to the maximum center frequency (half the sample rate of the input

signal).

Tunable: Yes
Dependencies

To enable this parameter, set Filter specification to Coefficients.

Gain (Linear Units) — Peak or dip gain of the filter
2 (default) | positive scalar

A value greater than one boosts the input signal. A value less than one attenuates the
input signal.

Tunable: Yes
Dependencies

To enable this parameter, set Filter specification to Coefficients.

Quality factor — Quality factor of the filter
5 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, set Filter specification to Quality factor and center
frequency.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

 Parametric EQ Filter

5-81

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

View Filter Response — Open plot to visualize magnitude response
button

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is faster
compared to Interpreted execution.

Tunable: No

Model Examples

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, NJ:
Prentice-Hall, 1996.

See Also
System Objects
multibandParametricEQ

5 Blocks in Audio System Toolbox

5-82

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

 Parametric EQ Filter

5-83

Reverberator
Add reverberation to audio signal
Library: Audio System Toolbox / Effects

Description
The Reverberator block adds reverberation to mono or stereo audio signals. You can tune
parameters of the Reverberator block to mimic different acoustic environments.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Reverberator block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

5 Blocks in Audio System Toolbox

5-84

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Pre-delay (s) — Pre-delay for reverberation
0 (default) | scalar in the range 0 to 1

Pre-delay for reverberation is the time between hearing direct sound and the first early
reflection. The value of Pre-delay (s) is proportional to the size of the room being
modeled.

Tunable: Yes

Highcut frequency (Hz) — Lowpass filter cutoff in the range 0 to (Sample Rate)/2
20000 (default) | real positive scalar

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the
front of the reverberator structure. It prevents the application of reverberation to high-
frequency components of the input.

Tunable: Yes

Diffusion — Density of reverb tail
0.50 (default) | scalar in the range 0 to 1

Diffusion is proportional to the rate at which the reverb tail builds in density.
Increasing Diffusion pushes the reflections closer together, thickening the sound.
Reducing Diffusion creates more discrete echoes.

Tunable: Yes

Decay factor — Decay factor of reverb tail
0.50 (default) | scalar in the range 0 to 1

 Reverberator

5-85

Decay factor is proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use
a short reverb tail (high decay factor).

Tunable: Yes

High frequency damping — High-frequency damping
0.0005 (default) | scalar in the range 0 to 1

High frequency damping is proportional to the attenuation of high frequencies in the
reverberation output. Setting High frequency damping to a large value makes high-
frequency reflections decay faster than low-frequency reflections.

Tunable: Yes

Wet/dry mix — Ratio of wet (reverberated) signal to dry (original) signal
0.3 (default) | scalar in the range 0 to 1

Wet/dry mix is the ratio of wet (reverberated) signal to dry (original) signal that your
Reverberator block outputs.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

5 Blocks in Audio System Toolbox

5-86

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Model Examples

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology
described in [1] and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

The description for the algorithm that follows is for a stereo input. A mono input is a
simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x n x n x n
R L

[] . [] []= ¥ +()0 5 .

 Reverberator

5-87

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

•
The pre-delay output is determined as x n x n kp[] []= - , where the Pre-delay (s)
parameter determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP z

z

() ,=
-

-
-

1

1 1

a

a

where

a p= - ¥
Ê

Ë
Á

ˆ

¯
˜exp .2

f

f

c

s

• fc is the cutoff frequency specified by the Pre-delay (s) parameter.
• fs is the sampling frequency specified by the Inherit sample rate from input

parameter or the Input sample rate (Hz) parameter.

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP z
z

z

k

k
() ,=

+

+

-

-

b

b1

where β is the coefficient specified by the Diffusion property and k is the delay as
follows:

• For AP1, k = 142.

5 Blocks in Audio System Toolbox

5-88

• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a
reverberation tail.

The following description tracks the signal as it progresses through the top of the tank.
The signal progression through the bottom of the tank follows the same pattern, with
different delay specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from
the bottom of the tank.

 Reverberator

5-89

2 The signal passes through a modulated allpass filter:

Modulated AP z
z

z

k

k1
1

() =
- +

-

-

-

b

b

• β is the coefficient specified by the Diffusion parameter.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude = (8/29761) ×

(sample rate). To account for fractional delay resulting from the modulating k,
allpass interpolation is used [2].

3 The signal is delayed again, and then passes through a lowpass filter:

LP z

z
2 1

1

1
() =

-

-
-

j

j

• φ is the coefficient specified by the High frequency damping parameter.
4 The signal is multiplied by a gain specified by the Decay factor parameter. The

signal then passes through an allpass filter:

AP z
z

z

k

k5
1

() .=
+

+

-

-

b

b

• β is the coefficient specified by the Diffusion parameter.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the
next iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the
tank is calculated as the signed sum of delay lines picked off at various points from the
tank. The summed output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:
y n x n x nR R R[] [] [] ,= -() +1 3k k

y n x n x nL L L[] [] [] ,= -() +1 3k k

where the Wet/dry mix parameter determines κ.

5 Blocks in Audio System Toolbox

5-90

References

[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the
Audio Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of
the Audio Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

See Also
System Objects
reverberator

Introduced in R2016a

 Reverberator

5-91

Weighting Filter
Weighted frequency response filter
Library: Audio System Toolbox / Filters

Description
The Weighting Filter block performs frequency-weighted filtering independently across
each input channel.

Ports

Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Weighting Filter block outputs a signal with the same data type as the input signal.
The size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

5 Blocks in Audio System Toolbox

5-92

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is
the number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Weighting method — Type of frequency weighting
A-weighting (default) | C-weighting | K-weighting

See “A-Weighting” on page 5-94, “C-Weighting” on page 5-95, and “K-Weighting” on
page 5-96 for the definition of the weighting curves.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is faster than
Interpreted execution.

 Weighting Filter

5-93

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed compared to Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Creates a mask for filter response visualization
No mask (default) | Class 1 | Class 2

The mask attenuation limits are defined in the IEC 61672-1:2002 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes
Dependencies

To enable this parameter, set Weighting method to A-weighting or C-weighting.

Visualize filter response — Open plot to visualize magnitude response and
compliance mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

Model Examples

Definitions

A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB
attenuation at 100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements
of noise level are increasingly found in sales literature for domestic appliances. In most
countries, the use of A-weighting is mandated for the protection of workers against noise-

5 Blocks in Audio System Toolbox

5-94

induced deafness. The ISO and ICOA standards mandate A-weighting for all civil
aircraft noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for an A-weighting
filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

C-Weighting

The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8
kHz. C-curves are used in sound level meters for sounds that are louder than those
intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
System Toolbox converts the specified poles and zeros to the digital domain using a
bilinear transform:

 Weighting Filter

5-95

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of
two stages of filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

The table shows the coefficients for the filters.

5 Blocks in Audio System Toolbox

5-96

First Stage Shelving Coefficients Second Stage Highpass Coefficients

a
1

1 69065929318241= - . a
1

1 99004745483398= - .

a
2

0 73248077421585= . a
2

0 99007225036621= .

b
0

1 53512485958697= . b
0

1 0= .

b
1

2 6916918940638= - . b
1

2 0= - .

b
2

1 19839281085285= . b
2

1 0= .

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients
are recomputed for nonstandard sample rates using the algorithm described in [4].

References

[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical
Measurements. ANSI S1.42-2001. New York, NY: American National Standards
Institute, 2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part
1: Specifications. First Edition. IEC 61672-1. 2002-2005.

[3] International Telecommunication Union. Algorithms to measure audio programme
loudness and true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. “Implementation and
Evaluation of Autonomous Multi-track Fader Control.” Paper presented at the
132nd Audio Engineering Society Convention, Budapest, Hungary, 2012.

See Also
Blocks
Loudness Meter | Octave Filter

System Objects
loudnessMeter | octaveFilter | weightingFilter

 Weighting Filter

5-97

Introduced in R2016b

5 Blocks in Audio System Toolbox

5-98

